LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells

被引:224
作者
Bonaguidi, MA [1 ]
McGuire, T [1 ]
Hu, M [1 ]
Kan, LX [1 ]
Samanta, J [1 ]
Kessler, JA [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Davee Dept Neurol, Chicago, IL 60611 USA
来源
DEVELOPMENT | 2005年 / 132卷 / 24期
关键词
GFAP; glia; astrocyte; neural stem cell; leukemia inhibitory factor; bone morphogenetic protein; Noggin;
D O I
10.1242/dev.02166
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone morphogenetic protein (BMP) and leukemia inhibitory factor (LIF) signaling both promote the differentiation of neural stem/progenitor cells into glial fibrillary acidic protein (GFAP) immunoreactive cells. This study compares the cellular and molecular characteristics, and the potentiality, of GFAP(+) cells generated by these different signaling pathways. Treatment of cultured embryonic subventricular zone (SVZ) progenitor cells with LIF generates GFAP(+) cells that have a bipolar/tripolar morphology, remain in cell cycle, contain progenitor cell markers and demonstrate self-renewal with enhanced neurogenesis - characteristics that are typical of adult SVZ and subgranular zone (SGZ) stem cells/astrocytes. By contrast, BMP-induced GFAP(+) cells are stellate, exit the cell cycle, and lack progenitor traits and self-renewal characteristics that are typical of astrocytes in the nonneurogenic adult cortex. In vivo, transgenic overexpression of BMP4 increases the number of GFAP(+) astrocytes but depletes the GFAP(+) progenitor cell pool, whereas transgenic inhibition of BMP signaling increases the size of the GFAP(+) progenitor cell pool but reduces the overall numbers of astrocytes. We conclude that LIF and BMP signaling generate different astrocytic cell types, and propose that these cells are, respectively, adult progenitor cells and mature astrocytes.
引用
收藏
页码:5503 / 5514
页数:12
相关论文
共 58 条
[1]   AUTORADIOGRAPHIC AND HISTOLOGICAL STUDIES OF POSTNATAL NEUROGENESIS .4. CELL PROLIFERATION AND MIGRATION IN ANTERIOR FOREBRAIN, WITH SPECIAL REFERENCE TO PERSISTING NEUROGENESIS IN OLFACTORY BULB [J].
ALTMAN, J .
JOURNAL OF COMPARATIVE NEUROLOGY, 1969, 137 (04) :433-&
[2]   AUTORADIOGRAPHIC AND HISTOLOGICAL EVIDENCE OF POSTNATAL HIPPOCAMPAL NEUROGENESIS IN RATS [J].
ALTMAN, J ;
DAS, GD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1965, 124 (03) :319-&
[3]   Stem cells and pattern formation in the nervous system: The possible versus the actual [J].
Anderson, DJ .
NEURON, 2001, 30 (01) :19-35
[4]   Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway [J].
Bonni, A ;
Sun, Y ;
NadalVicens, M ;
Bhatt, A ;
Frank, DA ;
Rozovsky, I ;
Stahl, N ;
Yancopoulos, GD ;
Greenberg, ME .
SCIENCE, 1997, 278 (5337) :477-483
[5]   Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex [J].
Burrows, RC ;
Wancio, D ;
Levitt, P ;
Lillien, L .
NEURON, 1997, 19 (02) :251-267
[6]   Vertebrate neurogenesis is counteracted by Sox1-3 activity [J].
Bylund, M ;
Andersson, E ;
Novitch, BG ;
Muhr, J .
NATURE NEUROSCIENCE, 2003, 6 (11) :1162-1168
[7]   LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal [J].
Capela, A ;
Temple, S .
NEURON, 2002, 35 (05) :865-875
[8]   Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone [J].
Chmielnicki, E ;
Benraiss, A ;
Economides, AN ;
Goldman, SA .
JOURNAL OF NEUROSCIENCE, 2004, 24 (09) :2133-2142
[9]   GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain [J].
Denise, A ;
Garcia, R ;
Doan, NB ;
Imura, T ;
Bush, TG ;
Sofroniew, MV .
NATURE NEUROSCIENCE, 2004, 7 (11) :1233-1241
[10]   Subventricular zone astrocytes are neural stem cells in the adult mammalian brain [J].
Doetsch, F ;
Caillé, I ;
Lim, DA ;
García-Verdugo, JM ;
Alvarez-Buylla, A .
CELL, 1999, 97 (06) :703-716