Test of universal finite-size scaling in two-dimensional site percolation

被引:16
作者
Aharony, A [1 ]
Stauffer, D [1 ]
机构
[1] UNIV COLOGNE,INST THEORET PHYS,D-50923 COLOGNE,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 10期
关键词
D O I
10.1088/0305-4470/30/10/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Traditional two-scale-factor universality, concerning the number of clusters within a correlation volume near the percolation threshold, is reconfirmed by a comparison of site percolation on square and triangular lattices. We also test universality at the threshold, e.g. of the ratio xi/L, where xi is the correlation length and L the lattice size. At the threshold, the result is sensitive to the system's shape and aspect ratio, boundary conditions, the algorithm, the detailed units measuring xi and L, and possibly other factors as yet unexplored.
引用
收藏
页码:L301 / L306
页数:6
相关论文
共 20 条
[1]   UNIVERSAL CRITICAL AMPLITUDE RATIOS FOR PERCOLATION [J].
AHARONY, A .
PHYSICAL REVIEW B, 1980, 22 (01) :400-414
[2]   THE CORRELATION LENGTH FOR THE HIGH-DENSITY PHASE OF BERNOULLI PERCOLATION [J].
CHAYES, JT ;
CHAYES, L ;
GRIMMETT, GR ;
KESTEN, H ;
SCHONMANN, RH .
ANNALS OF PROBABILITY, 1989, 17 (04) :1277-1302
[3]   CRITICAL PROPERTIES OF RANDOM-SITE PERCOLATION IN 2 AND 3 DIMENSIONS - A MONTE-CARLO STUDY [J].
CORSTEN, M ;
JAN, N ;
JERRARD, R .
PHYSICA A, 1989, 156 (03) :781-794
[4]  
DABOUL D, 1997, UNPUB
[5]   MEAN NUMBER OF CLUSTERS FOR PERCOLATION PROCESSES IN 2 DIMENSIONS [J].
DOMB, C ;
PEARCE, CJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (10) :L137-L140
[6]   PERCOLATION THEORY [J].
ESSAM, JW .
REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (07) :833-912
[7]   LIMITED UNIVERSALITY AT THE PERCOLATION-THRESHOLD IN 2 TO 6 DIMENSIONS [J].
GROPENGIESSER, U ;
STAUFFER, D .
PHYSICA A, 1994, 210 (3-4) :320-325
[8]   PERCOLATION AND CLUSTER DISTRIBUTION .1. CLUSTER MULTIPLE LABELING TECHNIQUE AND CRITICAL CONCENTRATION ALGORITHM [J].
HOSHEN, J ;
KOPELMAN, R .
PHYSICAL REVIEW B, 1976, 14 (08) :3438-3445
[9]   Scaling and universality in the spanning probability for percolation [J].
Hovi, JP ;
Aharony, A .
PHYSICAL REVIEW E, 1996, 53 (01) :235-253
[10]   BOUNDARY-CONDITIONS AND SCALING FUNCTIONS OF PERCOLATION MODELS [J].
HU, CK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21) :L813-L820