Plastic plants and patchy soils

被引:238
作者
Hodge, A [1 ]
机构
[1] Univ York, Dept Biol, Area 14, York YO10 5YW, N Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
mycorrhizal symbiosis; nutrient competition; nitrogen; root physiological and morphological plasticity;
D O I
10.1093/jxb/eri280
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil nutrients are distributed in a non-uniform or 'patchy' manner. It is well established that the modular nature of root systems allows them to show both morphological and/or physiological plasticity upon encountering nutrient-rich patches. These plastic responses are widely believed to be foraging mechanisms by the plant to enhance nutrient resource capture. Although morphological plasticity has traditionally been viewed as the more expensive option as it requires new root construction, more recent evidence suggests this may not necessarily be the case. Moreover, plants may be able to recapture most of the initial outlay involved in new root construction, again lowering the overall cost to the plant. Under natural conditions the roots of most plant species have an additional nutrient acquisition mechanism namely mycorrhizal symbiosis. However, the impact of these important symbiotic associations upon the host plant's response to nutrient patches has received relatively little attention. The mycorrhizal fungal symbiont should, in theory, be better able to compete directly with the rest of the microbial community for the nutrients in the patch. This could potentially be important to the host plant, as generally, root proliferation responses are more important for interspecific plant, than plant-microbial, competition.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 116 条
[1]   FINE ROOT TURNOVER IN FOREST ECOSYSTEMS IN RELATION TO QUANTITY AND FORM OF NITROGEN AVAILABILITY - A COMPARISON OF 2 METHODS [J].
ABER, JD ;
MELILLO, JM ;
NADELHOFFER, KJ ;
MCCLAUGHERTY, CA ;
PASTOR, J .
OECOLOGIA, 1985, 66 (03) :317-321
[2]   THE ROLE OF PROTEINS IN THE NITROGEN NUTRITION OF ECTOMYCORRHIZAL PLANTS .1. UTILIZATION OF PEPTIDES AND PROTEINS BY ECTOMYCORRHIZAL FUNGI [J].
ABUZINADAH, RA ;
READ, DJ .
NEW PHYTOLOGIST, 1986, 103 (03) :481-493
[3]   THE BIOLOGY OF MYCORRHIZA IN THE ERICACEAE .9. PEPTIDES AS NITROGEN-SOURCES FOR THE ERICOID ENDOPHYTE AND FOR MYCORRHIZAL AND NON-MYCORRHIZAL PLANTS [J].
BAJWA, R ;
READ, DJ .
NEW PHYTOLOGIST, 1985, 101 (03) :459-467
[4]   THE STRUCTURE AND FUNCTION OF THE VEGETATIVE MYCELIUM OF ECTOMYCORRHIZAL PLANTS .5. FORAGING BEHAVIOR AND TRANSLOCATION OF NUTRIENTS FROM EXPLOITED LITTER [J].
BENDING, GD ;
READ, DJ .
NEW PHYTOLOGIST, 1995, 130 (03) :401-409
[5]  
Bever JD, 2001, BIOSCIENCE, V51, P923, DOI 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO
[6]  
2
[7]   THE EFFECTS OF SHADING AND N-STATUS ON ROOT PROLIFERATION IN NUTRIENT PATCHES BY THE PERENNIAL GRASS AGROPYRON-DESERTORUM IN THE FIELD [J].
BILBROUGH, CJ ;
CALDWELL, MM .
OECOLOGIA, 1995, 103 (01) :10-16
[8]   Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges [J].
Bouma, TJ ;
Yanai, RD ;
Elkin, AD ;
Hartmond, U ;
Flores-Alva, DE ;
Eissenstat, DM .
NEW PHYTOLOGIST, 2001, 150 (03) :685-695
[9]  
BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6
[10]   Species interactions at the level of fine roots in the field: Influence of soil nutrient heterogeneity and plant size [J].
Caldwell, MM ;
Manwaring, JH ;
Durham, SL .
OECOLOGIA, 1996, 106 (04) :440-447