Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories
被引:100
作者:
Yang, Sichun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USAUniv Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
Yang, Sichun
[1
]
Banavali, Nilesh K.
论文数: 0引用数: 0
h-index: 0
机构:
New York State Dept Hlth, Wadsworth Ctr, Div Genet, Lab Computat & Struct Biol, Albany, NY 12201 USAUniv Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
Banavali, Nilesh K.
[2
]
论文数: 引用数:
h-index:
机构:
Roux, Benoit
[1
]
机构:
[1] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[2] New York State Dept Hlth, Wadsworth Ctr, Div Genet, Lab Computat & Struct Biol, Albany, NY 12201 USA
The Src-family kinases are allosteric enzymes that play a key role in the regulation of cell growth and proliferation. In response to cellular signals, they undergo large conformational changes to switch between distinct inactive and active states. A computational strategy for characterizing the conformational transition pathway is presented to bridge the inactive and active states of the catalytic domain of Hck. The information from a large number ( 78) of independent all-atom molecular dynamics trajectories with explicit solvent is combined together to assemble a connectivity map of the conformational transition. Two intermediate states along the activation pathways are identified, and their structural features are characterized. A coarse free-energy landscape is built in terms of the collective motions corresponding to the opening of the activation loop (A-loop) and the rotation of the alpha C helix. This landscape shows that the protein can adopt a multitude of conformations in which the A-loop is partially open, while the alpha C helix remains in the orientation characteristic of the inactive conformation. The complete transition leading to the active conformation requires a concerted movement involving further opening of the A-loop, the relative alignment of N-lobe and C-lobe, and the rotation of the alpha C helix needed to recruit the residues necessary for catalysis in the active site. The analysis leads to a dynamic view of the full-length kinase activation, whereby transitions of the catalytic domain to intermediate configurations with a partially open A-loop are permitted, even while the SH2-SH3 clamp remains fully engaged. These transitions would render Y416 available for the transphosphorylation event that ultimately locks down the active state. The results provide a broad framework for picturing the conformational transitions leading to kinase activation.
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA
Banavali, Nilesh K.
Roux, Benoit
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USA
Banavali, NK
Roux, B
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USA
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA
Banavali, Nilesh K.
Roux, Benoit
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USA
Banavali, NK
Roux, B
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USACornell Univ, Weill Med Coll, Dept Physiol & Biochem, New York, NY 10021 USA