RNA-RNA recombination in Sindbis virus: Roles of the 3' conserved motif, poly(A) tail, and nonviral sequences of template RNAs in polymerase recognition and template switching

被引:37
作者
Hill, KR [1 ]
Hajjou, M [1 ]
Hu, JY [1 ]
Raju, R [1 ]
机构
[1] MEHARRY MED COLL, SCH MED, DEPT MICROBIOL, NASHVILLE, TN 37208 USA
关键词
D O I
10.1128/JVI.71.4.2693-2704.1997
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Sindbis virus (SIN), a mosquito-transmitted animal RNA virus, carries a 11.7-kb positive-sense RNA genome which is capped and polyadenylated. We recently reported that the SIN RNA-dependent RNA polymerase (RdRp) could initiate negative-strand RNA synthesis from a 0.3-kb 3'-coterminal SIN RNA fragment and undergo template switching in vivo (M. Hajjou, K. R. Hill, S. V. Subramaniam, J. Y. Hu, and R. Raju, J. Virol. 70:5153-5164, 1996). To identify and characterize the viral and nonviral sequences which regulate SIN RNA synthesis and recombination, a series of SIN RNAs carrying altered 3' ends were tested for the ability to produce infectious virus or to support recombination in BHK cells. The major findings of this report are as follows: (i) the 3'-terminal 20-nucleotides (nt) sequence along with the abutting poly(A) tail of the SIN genome fully supports negative-strand synthesis, genome replication, and template switching; (ii) a full-length SIN RNA carrying the 3'-terminal 24 nt but lacking the poly(A) tail is noninfectious; (iii) SIN RNAs which carry 3' 64 nt or more without the poly(A) tail are infectious and regain their poly(A) tail in vivo; (iv) donor templates lacking the poly(A) tail do not support template switching; (v) full-length SIN RNAs lacking the poly(A) tail but carrying 3' nonviral extensions, although debilitated to begin with, evolve into rapidly growing poly(A)-carrying mutants; (vi) poly(A) or poly(U) motifs positioned internally within the acceptor templates, in the absence of other promoter elements within the vicinity, do not induce the jumping polymerase to reinitiate at these sites; and (vii) the junction site selection on donor templates occurs independently of the sequences around the acceptor sites. In addition to furthering our understanding of RNA recombination, these studies give interesting clues as to how the alphavirus polymerase interacts with its 3' promoter elements of genomic RNA and nonreplicative RNAs. This is the first report that an in vitro-synthesized alphavirus RNA lacking a poly(A) tail can initiate infection and produce 3' polyadenylated viral genome in vivo.
引用
收藏
页码:2693 / 2704
页数:12
相关论文
共 72 条
[1]   SINDBIS VIRUS PROTEINS NSP1 AND NSP2 CONTAIN HOMOLOGY TO NONSTRUCTURAL PROTEINS FROM SEVERAL RNA PLANT-VIRUSES [J].
AHLQUIST, P ;
STRAUSS, EG ;
RICE, CM ;
STRAUSS, JH ;
HASELOFF, J ;
ZIMMERN, D .
JOURNAL OF VIROLOGY, 1985, 53 (02) :536-542
[2]   CIS-ACTING REQUIREMENTS FOR THE REPLICATION OF FLOCK HOUSE VIRUS-RNA 2 [J].
BALL, LA ;
LI, Y .
JOURNAL OF VIROLOGY, 1993, 67 (06) :3544-3551
[3]   DEGRADATION OF MESSENGER-RNA IN EUKARYOTES [J].
BEELMAN, CA ;
PARKER, R .
CELL, 1995, 81 (02) :179-183
[4]   INVITRO RECOMBINATION AND TERMINAL ELONGATION OF RNA BY Q-BETA REPLICASE [J].
BIEBRICHER, CK ;
LUCE, R .
EMBO JOURNAL, 1992, 11 (13) :5129-5135
[5]   INFECTIOUS TRANSCRIPTS AND CDNA CLONES OF RNA VIRUSES [J].
BOYER, JC ;
HAENNI, AL .
VIROLOGY, 1994, 198 (02) :415-426
[6]   SINDBIS VIRUS EXPRESSION VECTORS - PACKAGING OF RNA REPLICONS BY USING DEFECTIVE HELPER RNAS [J].
BREDENBEEK, PJ ;
FROLOV, I ;
RICE, CM ;
SCHLESINGER, S .
JOURNAL OF VIROLOGY, 1993, 67 (11) :6439-6446
[7]   MOLECULAR STUDIES OF GENETIC RNA-RNA RECOMBINATION IN BROME MOSAIC-VIRUS [J].
BUJARSKI, JJ ;
NAGY, PD ;
FLASINSKI, S .
ADVANCES IN VIRUS RESEARCH, VOL 43, 1994, 43 :275-302
[8]   GENETIC-RECOMBINATION BETWEEN RNA COMPONENTS OF A MULTIPARTITE PLANT-VIRUS [J].
BUJARSKI, JJ ;
KAESBERG, P .
NATURE, 1986, 321 (6069) :528-531
[9]   In vivo restoration of biologically active 3' ends of virus-associated RNAs by nonhomologous RNA recombination and replacement of a terminal motif [J].
Carpenter, CD ;
Simon, AE .
JOURNAL OF VIROLOGY, 1996, 70 (01) :478-486
[10]   INVOLVEMENT OF A STEM-LOOP STRUCTURE IN THE LOCATION OF JUNCTION SITES IN VIRAL-RNA RECOMBINATION [J].
CARPENTER, CD ;
OH, JW ;
ZHANG, CX ;
SIMON, AE .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 245 (05) :608-622