Interior-point methods: An old and new approach to nonlinear programming

被引:15
作者
Nesterov, Y
机构
[1] Ctr. Operations Res. and Economet., Univ. Catholique de Louvain, 1348 Louvain-la-Neuve
关键词
interior point methods; convex programming; complexity;
D O I
10.1007/BF02614321
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we discuss the main concepts of structural optimization, a field of nonlinear programming, which was formed by the intensive development of modem interior-point schemes. (C) 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:285 / 297
页数:13
相关论文
共 32 条
[1]  
[Anonymous], 1979, Soviet Math. Dokl
[2]  
[Anonymous], 1972, COMPLEXITY COMPUTER
[3]   On long step path following and SUMT for linear and quadratic programming [J].
Anstreicher, KM .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (01) :33-46
[4]  
Bertsekas D. P., 2019, Reinforcement learning and optimal control
[5]  
CARROLL CW, 1959, THESIS I PAPER CHEM
[6]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[7]  
FIACCO AV, 1995, NONLINEAR PROGRAMMIN
[8]  
FRISCH KR, 1954, COMMUNICATION 1018
[9]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[10]   DECOMPOSITION AND NONDIFFERENTIABLE OPTIMIZATION WITH THE PROJECTIVE ALGORITHM [J].
GOFFIN, JL ;
HAURIE, A ;
VIAL, JP .
MANAGEMENT SCIENCE, 1992, 38 (02) :284-302