Fully automatic cervical vertebrae segmentation framework for X-ray images

被引:89
作者
Al Arif, S. M. Masudur Rahman [1 ]
Knapp, Karen [2 ]
Slabaugh, Greg [1 ]
机构
[1] Univ London, Dept Comp Sci, London, England
[2] Univ Exeter, Med Sch, Exeter, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
Segmentation; Deep learning; FCN; UNet; Localization; Cervical vertebrae; X-ray; APPEARANCE; MODELS; SHAPE; SPINE;
D O I
10.1016/j.cmpb.2018.01.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 111
页数:17
相关论文
共 29 条
[1]  
Al-Arif S. M. M. R., 2015, P 19 C MED IM UND AN, P183
[2]  
Al-Arif S. M. M. R., 2017, P 4 INT WORKSH CHALL, V10182, P64
[3]  
Al-Arif S. M. M. R., 2015, P 2015 5 INT C IM PR
[4]  
[Anonymous], 1943, Bulletin of the Calcultta Mathematical Society, DOI DOI 10.1038/157869B0
[5]   AUTOMATIC SPINE AND PELVIS DETECTION IN FRONTAL X-RAYS USING DEEP NEURAL NETWORKS FOR PATCH DISPLACEMENT LEARNING [J].
Aubert, Benjamin ;
Vazquez, Carlos ;
Cresson, Thierry ;
Parent, Stefan ;
De Guise, Jacques .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :1426-1429
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]  
Benjelloun M., 2011, J BIOMEDICAL IMAGING, V2011, P9
[8]  
BenTaieb Aicha, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P460, DOI 10.1007/978-3-319-46723-8_53
[9]  
Bromiley P., 2015, Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, P159, DOI DOI 10.1007/978-3-319-14148-0
[10]  
Bromiley Paul A., 2016, Computational Methods and Clinical Applications for Spine Imaging. 4th International Workshop and Challenge, CSI 2016, held in conjunction with MICCAI 2016. Revised Selected Papers: LNCS 10182, P51, DOI 10.1007/978-3-319-55050-3_5