Nanofluidic injection and heterogeneous kinetics of organomercaptan surface displacement reactions on colloidal gold in a microfluidic stream

被引:6
作者
Kirk, JS
Sweedler, JV
Bohn, PW
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
D O I
10.1021/ac0518147
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Colloidal gold is developed as a molecular capture reagent in hybrid nanofluidic-microfluidic devices for mass-limited sample analysis. Two fluorescent organomercaptans are injected through a nanocapillary array membrane and subsequently captured at the surface of 19-nm-diameter colloidal Au nanoparticles. The surface displacement kinetics are monitored via quenching of the organomercaptan fluorescence by the metallic particles coupled to a distance-time conversion based on fluid velocity in the microfluidic channel using the point of mixing as the zero of time. The adsorbate concentration, colloid concentration, and fluid velocity are varied to determine the surface displacement rate constants for these heterogeneous reactions in the microfluidic device. Surface displacement rate constants are similar to 10(4) M-1 s(-1) for a small organic molecule and for an octapeptide. These values are similar to values determined in macroscale measurements made with a traditional fluorometer and are 1 order of magnitude larger than values reported for adsorption of organomercaptans on planar Au, indicating faster kinetics in the colloid-adsorbate system. These results highlight the utility of colloidal Au nanoparticles as molecular carriers for the sequestration of analytes, allowing the manipulation of mass-limited samples and ultimately the capture and delivery of selected analytes from a microfabricated device to an off-line detector.
引用
收藏
页码:2335 / 2341
页数:7
相关论文
共 53 条
[1]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164
[2]   FORMATION OF MONOLAYERS BY THE COADSORPTION OF THIOLS ON GOLD - VARIATION IN THE HEAD GROUP, TAIL GROUP, AND SOLVENT [J].
BAIN, CD ;
EVALL, J ;
WHITESIDES, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (18) :7155-7164
[3]   FORMATION OF MONOLAYER FILMS BY THE SPONTANEOUS ASSEMBLY OF ORGANIC THIOLS FROM SOLUTION ONTO GOLD [J].
BAIN, CD ;
TROUGHTON, EB ;
TAO, YT ;
EVALL, J ;
WHITESIDES, GM ;
NUZZO, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (01) :321-335
[4]   Monitoring of the self-assembled monolayer of 1-hexadecanethiol on a gold surface at nanomolar concentration using a piezo-excited millimeter-sized cantilever sensor [J].
Campbell, GA ;
Mutharasan, R .
LANGMUIR, 2005, 21 (25) :11568-11573
[5]   Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures [J].
Cannon, DM ;
Kuo, TC ;
Bohn, PW ;
Sweedler, JV .
ANALYTICAL CHEMISTRY, 2003, 75 (10) :2224-2230
[6]   Using three-dimensional microfluidic networks for solving computationally hard problems [J].
Chiu, DT ;
Pezzoli, E ;
Wu, HK ;
Stroock, AD ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :2961-2966
[7]   Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems [J].
Chiu, DT ;
Jeon, NL ;
Huang, S ;
Kane, RS ;
Wargo, CJ ;
Choi, IS ;
Ingber, DE ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2408-2413
[8]   Self-assembly of n-alkanethiols:: A kinetic study by second harmonic generation [J].
Dannenberger, O ;
Buck, M ;
Grunze, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (12) :2202-2213
[9]  
de la Fuente JM, 2001, ANGEW CHEM INT EDIT, V40, P2258, DOI 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO
[10]  
2-S