The inward rectification mechanism of the HERG cardiac potassium channel

被引:656
作者
Smith, PL
Baukrowitz, T
Yellen, G
机构
[1] MASSACHUSETTS GEN HOSP,BOSTON,MA 02114
[2] HARVARD UNIV,SCH MED,DEPT NEUROBIOL,BOSTON,MA 02114
关键词
D O I
10.1038/379833a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A human genetic defect associated with 'long Q-T syndrome', an abnormality of cardiac rhythm involving the repolarization of the action potential, was recently found to lie in the HERG gene, which codes for a potassium channel(1). The HERG K+ channel is unusual in that it seems to have the architectural plan of the depolarization-activated K+ channel family (six putative transmembrane segments), yet it exhibits rectification like that of the inward-rectifying K+ channels, a family with different molecular structure (two transmembrane segments)(2-4). We have studied HERG channels expressed in mammalian cells and find that this inward rectification arises from a rapid and voltage-dependent inactivation process that reduces conductance at positive voltages. The inactivation gating mechanism resembles that of C-type inactivation, often considered to be the 'slow inactivation' mechanism of other K+ channels. The characteristics of this gating suggest a specific role for this channel in the normal suppression of arrhythmias.
引用
收藏
页码:833 / 836
页数:4
相关论文
共 24 条
[1]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[2]   MODULATION OF K+ CURRENT BY FREQUENCY AND EXTERNAL [K+] - A TALE OF 2 INACTIVATION MECHANISMS [J].
BAUKROWITZ, T ;
YELLEN, G .
NEURON, 1995, 15 (04) :951-960
[3]   Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel [J].
Baukrowitz, T ;
Yellen, G .
SCIENCE, 1996, 271 (5249) :653-656
[4]   AMINO-TERMINUS AND THE FIRST 4 MEMBRANE-SPANNING SEGMENTS OF THE ARABIDOPSIS K+ CHANNEL KAT1 CONFER INWARD-RECTIFICATION PROPERTY OF PLANT-ANIMAL CHIMERIC CHANNELS [J].
CAO, YW ;
CRAWFORD, NM ;
SCHROEDER, JI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (30) :17697-17701
[5]   TETRAETHYLAMMONIUM BLOCKADE DISTINGUISHES 2 INACTIVATION MECHANISMS IN VOLTAGE-ACTIVATED K+ CHANNELS [J].
CHOI, KL ;
ALDRICH, RW ;
YELLEN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (12) :5092-5095
[6]   A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME [J].
CURRAN, ME ;
SPLAWSKI, I ;
TIMOTHY, KW ;
VINCENT, GM ;
GREEN, ED ;
KEATING, MT .
CELL, 1995, 80 (05) :795-803
[7]   THE INACTIVATION GATE OF THE SHAKER K+ CHANNEL BEHAVES LIKE AN OPEN-CHANNEL BLOCKER [J].
DEMO, SD ;
YELLEN, G .
NEURON, 1991, 7 (05) :743-753
[8]   MUTATIONS IN THE K+ CHANNEL SIGNATURE SEQUENCE [J].
HEGINBOTHAM, L ;
LU, Z ;
ABRAMSON, T ;
MACKINNON, R .
BIOPHYSICAL JOURNAL, 1994, 66 (04) :1061-1067
[9]   BIOPHYSICAL AND MOLECULAR MECHANISMS OF SHAKER POTASSIUM CHANNEL INACTIVATION [J].
HOSHI, T ;
ZAGOTTA, WN ;
ALDRICH, RW .
SCIENCE, 1990, 250 (4980) :533-538
[10]   REGULATION OF VOLTAGE-DEPENDENCE OF THE KAT1 CHANNEL BY INTRACELLULAR FACTORS [J].
HOSHI, T .
JOURNAL OF GENERAL PHYSIOLOGY, 1995, 105 (03) :309-328