Selective Ion Penetration of Graphene Oxide Membranes

被引:720
作者
Sun, Pengzhan [1 ]
Zhu, Miao [1 ]
Wang, Kunlin [1 ]
Zhong, Minlin [1 ]
Wei, Jinquan [1 ]
Wu, Dehai [1 ]
Xu, Zhiping [2 ,3 ]
Zhu, Hongwei [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mfg Mat Proc Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
[3] Tsinghua Univ, CNMM, Beijing 100084, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
graphene oxides; ion penetration; water treatment; METAL-IONS; CARBON NANOTUBES; SHEETS; CU2+; NI2+; ZN2+; CO2+;
D O I
10.1021/nn304471w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The selective ion penetration and water purification properties of freestanding graphene oxide (GO) membranes are demonstrated. Sodium salts permeated through GO membranes quickly, whereas heavy-metal salts infiltrated much more slowly. Interestingly, copper salts were entirely blocked by GO membranes, and organic contaminants also did not infiltrate. The mechanism of the selective ion-penetration properties of the GO membranes is discussed. The nanocapillaries formed within the membranes were responsible for the permeation of metal ions, whereas the coordination between heavy-metal ions with the GO membranes restricted the passage of the ions. Finally, the penetration processes of hybrid aqueous solutions were investigated; the results revealed that sodium salts can be separated effectively from copper salts and organic contaminants. The presented results demonstrate the potential applications of GO in areas such as barrier separation and water purification.
引用
收藏
页码:428 / 437
页数:10
相关论文
共 26 条
[1]   Interaction of different metal ions with carboxylic acid group: A quantitative study [J].
Bala, Tanushree ;
Prasad, B. L. V. ;
Sastry, Murali ;
Kahaly, Mousumi Upadhyay ;
Waghmare, Umesh V. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (28) :6183-6190
[2]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[3]   STRUCTURAL ASPECTS OF METAL-ION CARBOXYLATE INTERACTIONS [J].
CARRELL, CJ ;
CARRELL, HL ;
ERLEBACHER, J ;
GLUSKER, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (26) :8651-8656
[4]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[5]   Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane [J].
Du, Huailiang ;
Li, Jingyuan ;
Zhang, Jing ;
Su, Gang ;
Li, Xiaoyi ;
Zhao, Yuliang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (47) :23261-23266
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[8]   Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2.: XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts [J].
Espinós, JP ;
Morales, J ;
Barranco, A ;
Caballero, A ;
Holgado, JP ;
González-Elipe, AR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (27) :6921-6929
[9]   Graphene sheets from worm-like exfoliated graphite [J].
Gu, Wentian ;
Zhang, Wei ;
Li, Xinming ;
Zhu, Hongwei ;
Wei, Jinquan ;
Li, Zhen ;
Shu, Qinke ;
Wang, Chen ;
Wang, Kunlin ;
Shen, Wanci ;
Kang, Feiyu ;
Wu, Dehai .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (21) :3367-3369
[10]   STUDY OF OXYGEN-CONTAINING GROUPS IN A SERIES OF GRAPHITE OXIDES - PHYSICAL AND CHEMICAL CHARACTERIZATION [J].
HONTORIALUCAS, C ;
LOPEZPEINADO, AJ ;
LOPEZGONZALEZ, JDD ;
ROJASCERVANTES, ML ;
MARTINARANDA, RM .
CARBON, 1995, 33 (11) :1585-1592