Toward high-efficiency solar upconversion with plasmonic nanostructures
被引:55
作者:
Atre, Ashwin C.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mat Sci, Stanford, CA 94305 USAStanford Univ, Dept Mat Sci, Stanford, CA 94305 USA
Atre, Ashwin C.
[1
]
Garcia-Etxarri, Aitzol
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mat Sci, Stanford, CA 94305 USA
Basque Fdn Sci, IKERBASQUE, Bilbao 48011, SpainStanford Univ, Dept Mat Sci, Stanford, CA 94305 USA
Garcia-Etxarri, Aitzol
[1
,2
]
Alaeian, Hadiseh
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USAStanford Univ, Dept Mat Sci, Stanford, CA 94305 USA
Alaeian, Hadiseh
[3
]
Dionne, Jennifer A.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mat Sci, Stanford, CA 94305 USAStanford Univ, Dept Mat Sci, Stanford, CA 94305 USA
Dionne, Jennifer A.
[1
]
机构:
[1] Stanford Univ, Dept Mat Sci, Stanford, CA 94305 USA
[2] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Upconversion of sub-bandgap photons can increase the maximum efficiency of a single-junction solar cell from 30% to over 44%. However, upconverting materials often have small absorption cross-sections and poor radiative recombination efficiencies that limit their utility in solar applications. Here, we show that the efficiency of upconversion can be substantially enhanced with a suitably designed plasmonic nanostructure. The structure consists of a spherical nanocrescent composed of an upconverter-doped dielectric core and a crescent-shaped metallic shell. Using numerical techniques, we calculate a greater than 10-fold absorption enhancement for a broad range of sub-bandgap wavelengths throughout the entire upconverting core. Further, this nanocrescent enables a 100-fold increase in above-bandgap power emission toward the solar cell. Our results provide a framework for achieving low-power solar upconversion, potentially enabling a single-junction solar cell with an efficiency exceeding the Shockley-Queisser limit.