Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites

被引:240
作者
Le Novère, N [1 ]
Grutter, T [1 ]
Changeux, JP [1 ]
机构
[1] Inst Pasteur, URA 2182, CNRS, F-75724 Paris, France
关键词
D O I
10.1073/pnas.042699699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We constructed a three-dimensional model of the amino-terminal extracellular domain of three major types of nicotinic acetylcholine receptor, (alpha7)(5), (alpha4)(2)(beta2)(3), and (alpha1)(2)beta1gammadelta, on the basis of the recent x-ray structure determination of the molluscan acetylcholine-binding protein. Comparative analysis of the three models reveals that the agonist-binding pocket is much more conserved than the overall structure. Differences exist, however, in the side chains of several residues. In particular, a phenylalanine residue, present in beta2 but not in alpha7, is proposed to contribute to the high affinity for agonists in receptors containing the beta2 subunit. The semiautomatic docking of agonists in the ligand-binding pocket of (alpha7)(5) led to positions consistent with labeling and mutagenesis experiments. Accordingly, the quaternary ammonium head group of nicotine makes a pi-cation interaction with W148 (alpha7 numbering), whereas the pyridine ring is close to both the cysteine pair 189-190 and the complementary component of the binding site. The intrinsic affinities inferred from docking give a rank order epibatidine > nicotine > acetylcholine, in agreement with experimental values. Finally, our models offer a structural basis for potentiation by external Ca2+.
引用
收藏
页码:3210 / 3215
页数:6
相关论文
共 61 条
[1]   Physicochemical and immunological studies of the N-terminal domain of the Torpedo acetylcholine receptor α-subunit expressed in Escherichia coli [J].
Alexeev, T ;
Krivoshein, A ;
Shevalier, A ;
Kudelina, I ;
Telyakova, O ;
Vincent, A ;
Utkin, Y ;
Hucho, F ;
Tsetlin, V .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 259 (1-2) :310-319
[2]   HOMOMERIC AND NATIVE ALPHA-7 ACETYLCHOLINE-RECEPTORS EXHIBIT REMARKABLY SIMILAR BUT NONIDENTICAL PHARMACOLOGICAL PROPERTIES, SUGGESTING THAT THE NATIVE RECEPTOR IS A HETEROMERIC PROTEIN COMPLEX [J].
ANAND, R ;
PENG, X ;
LINDSTROM, J .
FEBS LETTERS, 1993, 327 (02) :241-246
[3]   Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors [J].
Arias, HR .
NEUROCHEMISTRY INTERNATIONAL, 2000, 36 (07) :595-645
[4]   UNCONVENTIONAL PHARMACOLOGY OF A NEURONAL NICOTINIC RECEPTOR MUTATED IN THE CHANNEL DOMAIN [J].
BERTRAND, D ;
DEVILLERSTHIERY, A ;
REVAH, F ;
GALZI, JL ;
HUSSY, N ;
MULLE, C ;
BERTRAND, S ;
BALLIVET, M ;
CHANGEUX, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (04) :1261-1265
[5]   Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors [J].
Brejc, K ;
van Dijk, WJ ;
Klaassen, RV ;
Schuurmans, M ;
van der Oost, J ;
Smit, AB ;
Sixma, TK .
NATURE, 2001, 411 (6835) :269-276
[6]  
Buisson B, 1996, J NEUROSCI, V16, P7880
[7]   Allosteric receptors after 30 years [J].
Changeux, JP ;
Edelstein, SJ .
NEURON, 1998, 21 (05) :959-980
[8]   USE OF A SNAKE VENON TOXIN TO CHARACTERIZE CHOLINERGIC RECEPTOR PROTEIN [J].
CHANGEUX, JP ;
KASAI, M ;
LEE, CY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1970, 67 (03) :1241-+
[9]   REGIONS OF BETA-2 AND BETA-4 RESPONSIBLE FOR DIFFERENCES BETWEEN THE STEADY-STATE DOSE-RESPONSE RELATIONSHIPS OF THE ALPHA-3-BETA-2 AND ALPHA-3-BETA-4 NEURONAL NICOTINIC RECEPTORS [J].
COHEN, BN ;
FIGL, A ;
QUICK, MW ;
LABARCA, C ;
DAVIDSON, N ;
LESTER, HA .
JOURNAL OF GENERAL PHYSIOLOGY, 1995, 105 (06) :745-764
[10]  
COHEN JB, 1991, J BIOL CHEM, V266, P23354