Noncommutative geometry and D-branes

被引:52
作者
Ho, PM
Wu, YS
机构
[1] Department of Physics, University of Utah, Salt Lake City
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-2693(97)00202-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply noncommutative geometry to a system of N parallel D-branes, which is interpreted as a quantum space. The Dirac operator defining the quantum differential calculus is identified to be the zero-momentum mode of the supercharge for strings connecting D-branes. As a result of the calculus, Connes' Yang-Mills action functional on the quantum space reproduces the dimensionally reduced U(N) super Yang-Mills action as the low energy effective action for D-brane dynamics. Several features that may look ad hoc in a noncommutative geometric construction are shown to have very natural physical or geometric origin in the D-brane picture in superstring theory. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 19 条
[1]  
BANKS T, HEPTH9610043
[2]   CONNECTION BETWEEN SPACE-TIME SUPERSYMMETRY AND NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH .
PHYSICS LETTERS B, 1994, 332 (3-4) :349-357
[3]   GRAND UNIFICATION IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1993, 395 (03) :672-698
[4]   GRAVITY IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :205-217
[5]  
Connes A., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P29, DOI 10.1016/0920-5632(91)90120-4
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]   NEW CONNECTIONS BETWEEN STRING THEORIES [J].
DAI, J ;
LEIGH, RG ;
POLCHINSKI, J .
MODERN PHYSICS LETTERS A, 1989, 4 (21) :2073-2083
[8]  
DOUGLAS MR, HEPTH9608024
[9]  
Green M.B., 1988, Superstring Theory, V2
[10]   DIRAC-BORN-INFELD ACTION FROM DIRICHLET SIGMA-MODEL [J].
LEIGH, RG .
MODERN PHYSICS LETTERS A, 1989, 4 (28) :2767-2772