A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer

被引:484
作者
Cho, Yonghyun
Oh, Pilgun
Cho, Jaephil [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Converging Res Ctr Innovat Battery Technol, Ulsan 689798, South Korea
关键词
Ni-based cathode; Li-ion batteries; pillaring effect; layered phase; stability; LITHIUM-ION BATTERIES; LI-ION; LINI0.8CO0.15AL0.05O2; CATHODES; STRUCTURAL-CHARACTERIZATION; SECONDARY BATTERIES; ELECTRODE MATERIALS; PERFORMANCE; CHEMISTRY; BEHAVIOR; LINIO2;
D O I
10.1021/nl304558t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A solid solution series of lithium nickel metal oxides, Li[Ni1-xMx]O-2 (with M = Co, Mn, and Al) have been investigated intensively to enhance the inherent structural instability of LiNiO2. However, when a voltage range of Ni-based cathode materials was increased up to >4.5 V, phase transitions occurring above 4.3 V resulted in accelerated formation of the trigonal phase (P (3) over bar m1) and NiO phases, leading to and pulverization of the cathode during cycling at 60 degrees C. In an attempt to overcome these problems, LiNi0.62Co0.14Mn0.24O2 cathode material with pillar layers in which Ni2+. ions were resided in Li slabs near the surface having a thickness of similar to 10 nm was prepared using a polyvinylpyrrolidone (PVP) functionalized Mn precursor coating on Ni0.7Co0.15Mn0.15(OH)(2). We confirmed the formation of a pillar layer via various analysis methods (XPS, HRTEM, and STEM). This material showed excellent structural stability due to a pillar layer, corresponding to 85% capacity retention between 3.0 and 4.5 Vat 60 degrees C after 100 cycles. In addition, the amount of heat generation was decreased by 40%, compared to LiNi0.70Co0.15Mn0.15O2.
引用
收藏
页码:1145 / 1152
页数:9
相关论文
共 44 条
[1]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[2]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[3]   High-performance ZrO2-coated LiNiO2 cathode material [J].
Cho, J ;
Kim, TJ ;
Kim, YJ ;
Park, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A159-A161
[4]   Spinel-Layered Core-Shell Cathode Materials for Li-Ion Batteries [J].
Cho, Yonghyun ;
Lee, Sanghan ;
Lee, Yongseok ;
Hong, Taeeun ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2011, 1 (05) :821-828
[5]   Significant Improvement of LiNi0.8Co0.15Al0.05O2 Cathodes at 60°C by SiO2 Dry Coating for Li-Ion Batteries [J].
Cho, Yonghyun ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :A625-A629
[6]   High Performance LiCoO2 Cathode Materials at 60°C for Lithium Secondary Batteries Prepared by the Facile Nanoscale Dry-Coating Method [J].
Cho, Yonghyun ;
Eom, Junho ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) :A617-A624
[7]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[8]   Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2 [J].
Chowdari, BVR ;
Rao, GVS ;
Chow, SY .
SOLID STATE IONICS, 2001, 140 (1-2) :55-62
[9]   Lithium batteries:: a new tool in solid state chemistry [J].
Delmas, C ;
Ménétrier, M ;
Croguennec, L ;
Levasseur, S ;
Pérès, JP ;
Pouillerie, C ;
Prado, G ;
Fournès, L ;
Weill, F .
INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 1999, 1 (01) :11-19
[10]   On the behavior of the LixNiO2 system:: an electrochemical and structural overview [J].
Delmas, C ;
Peres, JP ;
Rougier, A ;
Demourgues, A ;
Weill, F ;
Chadwick, A ;
Broussely, M ;
Perton, F ;
Biensan, P ;
Willmann, P .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :120-125