Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy

被引:76
作者
Tobacman, LS
Lin, D
Butters, C
Landis, C
Back, N
Pavlov, D
Homsher, E
机构
[1] Univ Iowa, Dept Internal Med, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Biochem, Iowa City, IA 52242 USA
[3] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90024 USA
关键词
D O I
10.1074/jbc.274.40.28363
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Missense mutations in the cardiac thin filament protein troponin T (TnT) are a cause of familial hypertrophic cardiomyopathy (FHC). To understand how these mutations produce dysfunction, five TnTs were produced and purified containing FHC mutations found in several regions of TnT, Functional defects were diverse. Mutations F110I, E244D, and COOH-terminal truncation weakened the affinity of troponin for the thin filament. Mutation Delta E160 resulted in thin filaments with increased calcium affinity at the regulatory site of troponin C. Mutations R92Q and F110I resulted in impaired troponin solubility, suggesting abnormal protein folding. Depending upon the mutation, the in vitro unloaded actin-myosin sliding speed showed small increases, showed small decreases, or was unchanged. COOH-terminal truncation mutation resulted in a decreased thin filament-myosin subfragment 1 MgATPase rate. The results indicate that the mutations cause diverse immediate effects, despite similarities in disease manifestations. Separable but repeatedly observed abnormalities resulting from FHC TnT mutations include increased unloaded sliding speed, increased or decreased Ca2+ affinity, impairment of folding or sarcomeric integrity, and decreased force. Enhancement as well as impairment of contractile protein function is observed, suggesting that TnT, including the troponin tail region, modulates the regulation of cardiac contraction.
引用
收藏
页码:28363 / 28370
页数:8
相关论文
共 59 条
[1]   Patients with familial hypertrophic cardiomyopathy caused by a Phe110Ile missense mutation in the cardiac troponin T gene have variable cardiac morphologies and a favorable prognosis [J].
Anan, R ;
Shono, H ;
Kisanuki, A ;
Arima, S ;
Nakao, S ;
Tanaka, H .
CIRCULATION, 1998, 98 (05) :391-397
[2]   Effects of two hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility [J].
Bing, W ;
Redwood, CS ;
Purcell, IF ;
Esposito, G ;
Watkins, H ;
Marston, SB .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 236 (03) :760-764
[3]  
Bottinelli R, 1998, CIRC RES, V82, P106
[4]   DEVELOPMENTALLY INDUCED, MUSCLE-SPECIFIC TRANS FACTORS CONTROL THE DIFFERENTIAL SPLICING OF ALTERNATIVE AND CONSTITUTIVE TROPONIN-T EXONS [J].
BREITBART, RE ;
NADALGINARD, B .
CELL, 1987, 49 (06) :793-803
[5]   ALTERNATIVE SPLICING - A UBIQUITOUS MECHANISM FOR THE GENERATION OF MULTIPLE PROTEIN ISOFORMS FROM SINGLE GENES [J].
BREITBART, RE ;
ANDREADIS, A ;
NADALGINARD, B .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :467-495
[6]   Cooperative effect of calcium binding to adjacent troponin molecules on the thin filament-myosin subfragment 1 Mg ATPase rate [J].
Butters, CA ;
Tobacman, JB ;
Tobacman, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (20) :13196-13202
[7]   Opposite effects of myosin subfragment 1 on binding of cardiac troponin and tropomyosin to the thin filament [J].
Cassell, M ;
Tobacman, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (22) :12867-12872
[8]  
CHALOVICH JM, 1982, J BIOL CHEM, V257, P2432
[9]   Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene [J].
Charron, P ;
Dubourg, O ;
Desnos, M ;
Bennaceur, M ;
Carrier, L ;
Camproux, AC ;
Isnard, R ;
Hagege, A ;
Langlard, JM ;
Bonne, G ;
Richard, P ;
Hainque, B ;
Bouhour, JB ;
Schwartz, K ;
Komajda, M .
CIRCULATION, 1998, 97 (22) :2230-2236
[10]   SKELETAL-MUSCLE EXPRESSION AND ABNORMAL FUNCTION OF BETA-MYOSIN IN HYPERTROPHIC CARDIOMYOPATHY [J].
CUDA, G ;
FANANAPAZIR, L ;
ZHU, WS ;
SELLERS, JR ;
EPSTEIN, ND .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 91 (06) :2861-2865