Spatial determinants of multisensory integration in cat superior colliculus neurons

被引:238
作者
Meredith, MA
Stein, BE
机构
[1] VIRGINIA COMMONWEALTH UNIV,MED COLL VIRGINIA,DEPT ANAT,RICHMOND,VA 23298
[2] WAKE FOREST UNIV,BOWMAN GRAY SCH MED,DEPT ANAT & NEUROBIOL,WINSTON SALEM,NC 27157
关键词
D O I
10.1152/jn.1996.75.5.1843
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Although a representation of multisensory space is contained in the superior colliculus, little is known about the spatial requirements of multisensory stimuli that influence the activity of neurons here. Critical to this problem is an assessment of the registry of the different receptive fields within individual multisensory neurons. The present study was initiated to determine how closely the receptive fields of individual multisensory neurons are aligned, the physiological role of that alignment, and the possible functional consequences of inducing receptive-field misalignment. 2. Individual multisensory neurons in the superior colliculus of anesthetized, paralyzed cats were studied with the use of standard extracellular recording techniques. The receptive fields of multisensory neurons: were large, as reported previously, but exhibited a surprisingly high degree of spatial coincidence. The average proportion of receptive-field overlap was 86% for the population of visual-auditory neurons sampled. 3. Because of this high degree of intersensory receptive-field correspondence, combined-modality stimuli that were coincident in space tended to fall within the excitatory regions of the receptive fields involved. The result was a significantly enhanced neuronal response in 88% of the multisensory neurons studied. If stimuli were spatially disparate, so that one fell outside its receptive field, either a decreased response occurred (56%), or no intersensory effect was apparent (44%). 4. The normal alignment of the different receptive fields of a multisensory neuron could be disrupted by passively displacing the eyes, pinnae, or limbs/body. In no case was a shift in location or size observed in a neuron's other receptive field(s) to compensate for this displacement. The physiological result of receptive-field misalignment was predictable and based on the location of the stimuli relative to the new positions of their respective receptive fields. Now, for example, one component of a spatially coincident pair of stimuli might fall outside its receptive field and inhibit the other's effects. 5. These data underscore the dependence of multisensory integrative responses on the relationship of the different stimuli to their corresponding receptive fields rather than to the spatial relationship of the stimuli to one another. Apparently, the alignment of different receptive fields for individual multisensory neurons ensures that responses to combinations of stimuli derived from the same event are integrated to increase the salience of that event. Therefore the maintenance of receptive-field alignment is critical for the appropriate integration of converging sensory signals and, ultimately, elicitation of adaptive behaviors.
引用
收藏
页码:1843 / 1857
页数:15
相关论文
共 54 条
[1]   THE DEVELOPMENT OF THE SOMATOSENSORY REPRESENTATION IN THE SUPERIOR COLLICULUS OF VISUALLY DEPRIVED MICE [J].
BENEDETTI, F .
DEVELOPMENTAL BRAIN RESEARCH, 1992, 65 (02) :173-178
[2]  
CHALUPA LM, 1977, J PHYSIOL-LONDON, V270, P596
[3]  
CLEMO HR, 1992, J COMP NEUROL, V314, P534
[4]   RESPONSES TO VISUAL STIMULATION AND RELATIONSHIP BETWEEN VISUAL, AUDITORY, AND SOMATOSENSORY INPUTS IN MOUSE SUPERIOR COLLICULUS [J].
DRAGER, UC ;
HUBEL, DH .
JOURNAL OF NEUROPHYSIOLOGY, 1975, 38 (03) :690-713
[5]  
Duhamel J-R, 1991, BRAIN SPACE, P223
[6]   TOPOGRAPHY OF VISUAL AND SOMATOSENSORY PROJECTIONS TO SUPERIOR COLLICULUS OF GOLDEN-HAMSTER [J].
FINLAY, BL ;
SCHNEPS, SE ;
WILSON, KG ;
SCHNEIDER, GE .
BRAIN RESEARCH, 1978, 142 (02) :223-235
[7]   RECEPTIVE FIELDS IN DEEP LAYERS OF CAT SUPERIOR COLLICULUS [J].
GORDON, B .
JOURNAL OF NEUROPHYSIOLOGY, 1973, 36 (02) :157-178
[8]  
GRAZIANO MSA, 1993, EXP BRAIN RES, V97, P96
[9]  
Groh J. M., 1993, Society for Neuroscience Abstracts, V19, P858
[10]   INTEGRATION OF VISUAL AND AUDITORY SPACE IN THE MAMMALIAN SUPERIOR COLLICULUS [J].
HARRIS, LR ;
BLAKEMORE, C ;
DONAGHY, M .
NATURE, 1980, 288 (5786) :56-59