Peroxisome proliferator-activated receptor-alpha (PPARalpha) activators, fish oil feeding, or fibrate administration up-regulated mitochondrial uncoupling protein (UCP2) mRNA expression in mouse liver by 5-9-fold, whereas tumor necrosis factor-alpha (TNFalpha) also up-regulated UCP2 in liver. In this study, the mechanisms for PPARa activators-induced up-regulation of UCP2 mRNA, related to TNFalpha and reactive oxygen species (ROS), were investigated. PPARa activators-induced UCP2 up-regulation in mouse/rat liver tissues was due to their increases in hepatocytes but not in non-parenchymal cells. Addition of PPARalpha activators, WY14,643 or fenofibrate, to cultured hepatocytes up-regulated UCP2 mRNA by 5-10-fold. PPARa activators-induced up-regulation of UCP2 mRNA was not due to increased mRNA stability and required cycloheximide-sensitive short term turnover protein(s). However, expression of PPARalpha/retinoid X receptor-alpha and PGC-1 was not rate-limiting for WY14,643-induced UCP2 up-regulation. In primary hepatocytes, an exogenous oxidant, tert-butyl-hydroperoxide (TBHP), which increased ROS production, up-regulated UCP2 mRNA, whereas WY14,643 treatment did not produce. detectable ROS under the condition that fibrate markedly up-regulated UCP2. In in vivo studies, PPARalpha activators moderately up-regulated TNFalpha mRNA expression in mouse liver. An anti-oxidant pyrrolidine dithiocarbamate ammonium salt injection completely prevented their TNFalpha mRNA increases but did not prevent most of their UCP2 mRNA increases. These data indicate that PPARalpha activators upregulate UCP2 expression in hepatocytes through unknown proteins by increased transcription, and neither ROS nor TNFa production are the major causes for PPARalpha activators-induced UCP2 up-regulation.