A linearized approach to flow resistance uncertainty in a 2-D finite volume model of flood flow

被引:17
作者
Horritt, MS [1 ]
机构
[1] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, Avon, England
基金
英国自然环境研究理事会;
关键词
flood; model; finite volumes; uncertainty; friction;
D O I
10.1016/j.jhydrol.2005.04.009
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A linearized approach to quantifying predictive uncertainty in a 2-D model of shallow water flow in response to uncertainty in friction parameterization is presented. The resulting uncertain finite volume (UFV) method is tested against Monte Carlo simulations for uncertain models over channel only, floodplain only and channel and floodplain meshes. The results show that the UFV model performs well in predicting mean and standard deviations of water depths, for problems with two independent Manning's n values, with standard deviations of up to 0.02 m(1/3) s(-1) with a mean value of 0.03 m(1/3) s(-1). For depth averaged velocities, mean values are well represented, but standard deviations are poorly predicted by UFV. UFV also performs well when modelling flow over an uneven fractal topography and for a distributed (11 degrees of freedom) parameterization. A computation time advantage of > 50 when compared to the Monte Carlo method is observed. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 1959, OPEN CHANNEL FLOW
[2]   Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data [J].
Aronica, G ;
Hankin, B ;
Beven, K .
ADVANCES IN WATER RESOURCES, 1998, 22 (04) :349-365
[3]   Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE [J].
Aronica, G ;
Bates, PD ;
Horritt, MS .
HYDROLOGICAL PROCESSES, 2002, 16 (10) :2001-2016
[4]   Bayesian updating of flood inundation likelihoods conditioned on flood extent data [J].
Bates, PD ;
Horritt, MS ;
Aronica, G ;
Beven, K .
HYDROLOGICAL PROCESSES, 2004, 18 (17) :3347-3370
[5]   Internal and external validation of a two-dimensional finite element code for river flood simulations [J].
Bates, PD ;
Stewart, MD ;
Siggers, GB ;
Smith, CN ;
Hervouet, JM ;
Sellin, RHJ .
PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MARITIME AND ENERGY, 1998, 130 (03) :127-141
[6]  
Brasington J, 2000, EARTH SURF PROC LAND, V25, P973, DOI 10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO
[7]  
2-Y
[8]   Image processing of airborne scanning laser altimetry data for improved river flood modelling [J].
Cobby, DM ;
Mason, DC ;
Davenport, IJ .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2001, 56 (02) :121-138
[9]   Effect of riparian vegetation on flow resistance and flood potential [J].
Darby, SE .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1999, 125 (05) :443-454
[10]   Nonrigid, nonsubmerged, vegetative roughness on floodplains [J].
FathiMaghadam, M ;
Kouwen, N .
JOURNAL OF HYDRAULIC ENGINEERING, 1997, 123 (01) :51-57