Fluorescence measurements and H/H-2 exchange experiments monitored by mass spectrometry have been applied to investigate the influence of the conserved disulfide bridges on the folding behavior and in vitro aggregation properties of the scFv fragment of the antibody hu4D5-8. A set of four proteins, carrying none, one, or both of the disulfide bridges have been compared regarding their stabilities, folding kinetics and tendency to aggregate. The results show that refolding of all four scFvs is ultimately limited by a slow proline isomerization in the V-L domain, since the native cis-conformation of proline L95 seems to be a prerequisite for formation of the native interface. Starting from short-term denatured protein, with the proline residues in their native conformation, a kinetically trapped intermediate is populated depending on the conditions, whose rate of conversion is slower than that of the fast-folding molecules. According to deuteron protection patterns determined by mass spectrometry, those domains retaining the disulfide bridge are able to form stable native-like structure, independent of native interface formation. The disulfide-free domains, in contrast, require the native interface for sufficient stabilization. The resistance of the scFvs towards aggregation seems to be critically dependent on the presence of the disulfide bridge in the V-H domain, and thus on the ability of the V-H domain to form stable structure prior to interaction with the V-L domain. The presence of a stable V-L domain in combination with a disulfide-free V-H domain appears to further promote aggregation, indicating the involvement of structured domains in the aggregates. (C) 1999 Academic Press.