Heating Effect of Dielectric Barrier Discharges for Direct Medical Treatment

被引:36
作者
Ayan, Halim [1 ]
Fridman, Gregory [2 ]
Staack, David [1 ]
Gutsol, Alexander F. [3 ]
Vasilets, Victor N. [4 ]
Fridman, Alexander A. [1 ]
Friedman, Gary [5 ]
机构
[1] Drexel Univ, Coll Engn, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA
[2] Drexel Univ, Sch Biomed Engn Sci & Hlth Syst, Philadelphia, PA 19104 USA
[3] Chevron Energy Technol Co, Richmond, CA 94802 USA
[4] Russian Acad Sci, Inst Energy Problems Chem Phys, Moscow 142432, Russia
[5] Drexel Univ, Coll Engn, Dept Elect & Comp Engn, Philadelphia, PA 19104 USA
关键词
Atmospheric pressure discharges; dielectric barrier discharges (DBDs); nonthermal plasma; plasma medicine; ATMOSPHERIC-PRESSURE; TEMPERATURE-MEASUREMENTS; PLASMA NEEDLE; AIR;
D O I
10.1109/TPS.2008.2006899
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Several variations of dielectric barrier discharge (DBD) have been developed for nondamaging living-tissue sterilization and blood coagulation. This so-called floating electrode DBD (FE-DBD) has been shown by histology to not damage the treated tissue. Nevertheless, preliminary experiments show that a person who touches the FE-DBD can feel the discharge action. Some of these unpleasant sensations are related to the thermal effects of the plasma. These thermal effects and other important parameters of the discharge are strongly dependent on the electrical properties of the discharge, i.e., driving voltage and waveform shape. In this paper, we first employed sinusoidal driving waveform for medical applications. After that, in order to increase the uniformity and decrease the temperature, we employed a microsecond-pulsed waveform system with a few microsecond pulse durations. Both plasma systems have been analyzed and compared for thermal effects and temperature of the discharge in order to determine the possibilities to control the heating effect with driving waveform.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 17 条
[1]   A NEW METHOD FOR TEMPERATURE EVALUATION IN A NITROGEN DISCHARGE [J].
CHELOUAH, A ;
MARODE, E ;
HARTMANN, G ;
ACHAT, S .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1994, 27 (05) :940-945
[2]   Non-thermal atmospheric pressure discharges [J].
Fridman, A ;
Chirokov, A ;
Gutsol, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (02) :R1-R24
[3]   Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air [J].
Fridman, Gregory ;
Peddinghaus, Marie ;
Ayan, Halim ;
Fridman, Alexander ;
Balasubramanian, Manjula ;
Gutsol, Alexander ;
Brooks, Ari ;
Friedman, Gary .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2006, 26 (04) :425-442
[4]   Killing of S-mutans bacteria using a plasma needle at atmospheric pressure [J].
Goree, J. ;
Liu, Bin ;
Drake, David ;
Stoffels, Eva .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (04) :1317-1324
[5]   Dielectric-barrier discharges: Their history, discharge physics, and industrial applications [J].
Kogelschatz, U .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2003, 23 (01) :1-46
[6]   Filamentary, patterned, and diffuse barrier discharges [J].
Kogelschatz, U .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (04) :1400-1408
[7]   Biological decontamination by nonthermal plasmas [J].
Laroussi, M ;
Alexeff, I ;
Kang, WL .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (01) :184-188
[8]   Optical diagnostics of atmospheric pressure air plasmas [J].
Laux, CO ;
Spence, TG ;
Kruger, CH ;
Zare, RN .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2003, 12 (02) :125-138
[9]  
Massines F., 1998, Plasmas and Polymers, V3, P43, DOI 10.1023/A:1022582017499
[10]   Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge - gas temperature and molecular fraction effects [J].
Motret, O ;
Hibert, C ;
Pellerin, S ;
Pouvesle, JM .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (12) :1493-1498