Parameter estimation of the nonlinear Muskingum model using harmony search

被引:262
作者
Kim, JH [1 ]
Geem, ZW
Kim, ES
机构
[1] Korea Univ, Dept Civil & Environm Engn, Seoul 136701, South Korea
[2] Univ Maryland, Dept Civil & Environm Engn, College Pk, MD 20742 USA
来源
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION | 2001年 / 37卷 / 05期
关键词
Harmony Search; nonlinear Muskingum method; parameter calibration; genetic algorithm;
D O I
10.1111/j.1752-1688.2001.tb03627.x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A newly developed heuristic algorithm, Harmony Search, is applied to the parameter estimation problem of the nonlinear Muskingum model. Harmony Search found better values of parameters in the nonlinear Muskingum model than five other methods including another heuristic method, genetic algorithm, in terms of SSQ (the sum of the square of the deviations between the observed and routed outflows), SAD (the sum of the absolute value of the deviations between the observed and routed outflows), DPO (deviations of peak of routed and actual flows), and DPOT (deviations of peak time of routed and actual outflow). Harmony Search also has the advantage that it does not require the process of assuming the initial values of design parameters. The sensitivity analysis of Harmony Memory Considering Rate showed that relatively large values of Harmony Memory Considering Rate makes the Harmony Search converge to a better solution.
引用
收藏
页码:1131 / 1138
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1938, UNIT HYDROGRAPH FLOO
[2]  
Fogel L. J., 1966, ARTIFICIAL INTELLIGE, DOI DOI 10.1109/9780470544600.CH7
[3]  
Fread D.L., 1976, THEORETICAL DEV IMPL
[4]  
Geem Z. W., 2000, THESIS KOREA U SEOUL
[5]   A new heuristic optimization algorithm: Harmony search [J].
Geem, ZW ;
Kim, JH ;
Loganathan, GV .
SIMULATION, 2001, 76 (02) :60-68
[6]  
GEEM ZW, 2001, INT J MODELLING SIMU, V21
[7]   FLOOD ROUTING BY MUSKINGUM METHOD [J].
GILL, MA .
JOURNAL OF HYDROLOGY, 1978, 36 (3-4) :353-363
[8]  
HOLLAND JH, 1975, ADAPTATION NATURAL A
[9]  
HOOKE R, 1961, J ASS COMPUTER MACHI, V8
[10]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680