Distributed logic processors trained under constraints using stochastic approximation techniques

被引:2
作者
Najim, K [1 ]
Ikonen, E
机构
[1] Ecole Natl Super Ingn Genie Chim, Proc Contol Lab, F-31078 Toulouse, France
[2] Oulu Univ, Dept Proc Engn, FIN-90401 Oulu, Finland
[3] Infotech Oulu, Syst Engn Lab, FIN-90401 Oulu, Finland
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS | 1999年 / 29卷 / 04期
基金
芬兰科学院;
关键词
fuzzy models; parameter estimation; power plants;
D O I
10.1109/3468.769763
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns the estimation under constraints of the parameters of distributed logic processors (DLP). This optimization problem under constraints is solved using stochastic approximation techniques. DLP's are fuzzy neural networks capable of representing nonlinear functions. They consist of several logic processors, each of which performs a logical fuzzy mapping. A simulation example, using data collected from an industrial fluidized bed combustor, illustrates the feasibility and the performance of this training algorithm.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 9 条
[1]   DYNAMIC-MODEL FOR A BUBBLING FLUIDIZED-BED COAL COMBUSTOR [J].
IKONEN, E ;
KORTELA, U .
CONTROL ENGINEERING PRACTICE, 1994, 2 (06) :1001-1006
[2]   Fuzzy neural networks and application to the FBC process [J].
Ikonen, E ;
Najim, K .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (03) :259-269
[3]  
IKONEN E, 1997, P I ELECTR ENG, V144, P255
[4]  
IKONEN E, 1996, THESIS ACTA U OULUEN
[5]   STOCHASTIC ESTIMATION OF THE MAXIMUM OF A REGRESSION FUNCTION [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (03) :462-466
[6]   FUZZY NEURAL NETWORKS AND NEUROCOMPUTATIONS [J].
PEDRYCZ, W .
FUZZY SETS AND SYSTEMS, 1993, 56 (01) :1-28
[7]  
PEDRYCZ W, 1995, IEEE T SYST MAN CYB, V25, P627
[8]  
TAKAGI T, 1985, IEEE T SYST MAN CYB, V15, P7
[9]  
WALK H, 1983, COMMUN STAT SEQUENTI, V2, P369