Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures

被引:62
作者
Ferraro, JT
Daneshmand, M
Bizios, R
Rizzo, V
机构
[1] Albany Med Coll, Ctr Cardiovasc Sci, Albany, NY 12208 USA
[2] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2004年 / 286卷 / 04期
关键词
lipid rafts; caveolae; extracellular signal-regulated kinase;
D O I
10.1152/ajpcell.00224.2003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK) 1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl-beta-cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane.
引用
收藏
页码:C831 / C839
页数:9
相关论文
共 53 条
[1]   POTOCYTOSIS - SEQUESTRATION AND TRANSPORT OF SMALL MOLECULES BY CAVEOLAE [J].
ANDERSON, RGW ;
KAMEN, BA ;
ROTHBERG, KG ;
LACEY, SW .
SCIENCE, 1992, 255 (5043) :410-411
[2]   Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: A hypothesis for calcium-dependent and calcium-independent events activated by flow [J].
Berk, BC ;
Corson, MA ;
Peterson, TE ;
Tseng, H .
JOURNAL OF BIOMECHANICS, 1995, 28 (12) :1439-1450
[3]   Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells [J].
Boyd, NL ;
Park, H ;
Yi, H ;
Boo, YC ;
Sorescu, GP ;
Sykes, M ;
Jo, H .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2003, 285 (03) :H1113-H1122
[4]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[5]   Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts [J].
Chen, NX ;
Ryder, KD ;
Pavalko, FM ;
Turner, CH ;
Burr, DB ;
Qiu, JY ;
Duncan, RL .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2000, 278 (05) :C989-C997
[6]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[7]   PLASMA-MEMBRANE CAVEOLAE MEDIATE THE EFFLUX OF CELLULAR FREE-CHOLESTEROL [J].
FIELDING, PE ;
FIELDING, CJ .
BIOCHEMISTRY, 1995, 34 (44) :14288-14292
[8]   SHEAR-STRESS MODULATES ENDOTHELIAL-CELL MORPHOLOGY AND F-ACTIN ORGANIZATION THROUGH THE REGULATION OF FOCAL ADHESION-ASSOCIATED PROTEINS [J].
GIRARD, PR ;
NEREM, RM .
JOURNAL OF CELLULAR PHYSIOLOGY, 1995, 163 (01) :179-193
[9]  
GLANTSCHNIG H, 1996, EUR J CLIN INVEST, V26, P533
[10]  
Gopalakrishna P, 2000, J CELL BIOCHEM, V77, P517, DOI 10.1002/(SICI)1097-4644(20000615)77:4<517::AID-JCB1>3.0.CO