A MASSIVE CORE IN JUPITER PREDICTED FROM FIRST-PRINCIPLES SIMULATIONS

被引:190
作者
Militzer, B. [1 ,2 ]
Hubbard, W. B. [3 ]
Vorberger, J. [4 ]
Tamblyn, I. [5 ]
Bonev, S. A. [5 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[3] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[4] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[5] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 315, Canada
基金
英国工程与自然科学研究理事会; 美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
dense matter; equation of state; planets and satellites: individual (Jupiter);
D O I
10.1086/594364
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hydrogen-helium mixtures at conditions of Jupiter's interior are studied with first-principles computer simulations. The resulting equation of state (EOS) implies that Jupiter possesses a central core of 14-18 Earth masses of heavier elements, a result that supports core accretion as the standard model for the formation of hydrogen-rich giant planets. Our nominal model has about 4 Earth masses of planetary ices in the H-He-rich mantle, a result that is, within a modeling uncertainty of 6 Earth masses, consistent with abundances measured by the 1995 Galileo entry probe mission, suggesting that the composition found by the probe may be representative of the entire planet. Interior models derived from this first-principles EOS do not give a match to Jupiter's gravity moment J(4) unless one invokes interior differential rotation, implying that Jovian interior dynamics has an observable effect on the high-order gravity field.
引用
收藏
页码:L45 / L48
页数:4
相关论文
共 36 条
[1]   Saturn's gravitational field, internal rotation, and interior structure [J].
Anderson, John D. ;
Schubert, Gerald .
SCIENCE, 2007, 317 (5843) :1384-1387
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Testing disk instability models for giant planet formation [J].
Boss, Alan P. .
ASTROPHYSICAL JOURNAL, 2007, 661 (01) :L73-L76
[4]   Possible solutions to the radius anomalies of transiting giant planets [J].
Burrows, A. ;
Hubeny, I. ;
Budaj, J. ;
Hubbard, W. B. .
ASTROPHYSICAL JOURNAL, 2007, 661 (01) :502-514
[5]   GRAVITY-FIELD OF THE JOVIAN SYSTEM FROM PIONEER AND VOYAGER TRACKING DATA [J].
CAMPBELL, JK ;
SYNNOTT, SP .
ASTRONOMICAL JOURNAL, 1985, 90 (02) :364-372
[6]   Dense plasmas in astrophysics: from giant planets to neutron stars [J].
Chabrier, G. ;
Saumon, D. ;
Potekhin, A. Y. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (17) :4411-4419
[7]   Quantum Monte Carlo simulation of the high-pressure molecular-atomic crossover in fluid hydrogen [J].
Delaney, Kris T. ;
Pierleoni, Carlo ;
Ceperley, D. M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[8]   The planet-metallicity correlation [J].
Fischer, DA ;
Valenti, J .
ASTROPHYSICAL JOURNAL, 2005, 622 (02) :1102-1117
[9]   The solar chemical composition [J].
Grevesse, N. ;
Asplund, M. ;
Sauval, A. J. .
SPACE SCIENCE REVIEWS, 2007, 130 (1-4) :105-114
[10]   New constraints on the composition of Jupiter from Galileo measurements and interior models [J].
Guillot, T ;
Gautier, D ;
Hubbard, WB .
ICARUS, 1997, 130 (02) :534-539