Functional and topological characterization of protein interaction networks

被引:455
作者
Yook, SH
Oltvai, ZN
Barabási, AL
机构
[1] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[2] Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA
关键词
bioinformatics; protein interaction networks; scale-free networks;
D O I
10.1002/pmic.200300636
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The elucidation of the cell's large-scale organization is a primary challenge for post-genomic biology, and understanding the structure of protein interaction networks offers an important starting point for such studies. We compare four available databases that approximate the protein interaction network of the yeast, Saccharomyces cerevisiae, aiming to uncover the network's generic large-scale properties and the impact of the proteins' function and cellular localization on the network topology. We show how each database supports a scale-free, topology with hierarchical modularity, indicating that these features represent a robust and generic property of the protein interactions network. We also find strong correlations between the network's structure and the functional role and subcellular localization of its protein constituents, concluding that most functional and/or localization classes appear as relatively segregated subnetworks of the full protein interaction network. The uncovered systematic differences between the four protein interaction databases reflect their relative coverage for different functional and localization classes and provide a guide for their utility in various bioinformatics studies.
引用
收藏
页码:928 / 942
页数:15
相关论文
共 44 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[3]   Interrogating protein interaction networks through structural biology [J].
Aloy, P ;
Russell, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5896-5901
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Deterministic scale-free networks [J].
Barabási, AL ;
Ravasz, E ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 299 (3-4) :559-564
[6]   Predicting protein-protein interactions from primary structure [J].
Bock, JR ;
Gough, DA .
BIOINFORMATICS, 2001, 17 (05) :455-460
[7]  
Bollobas B, 1985, RANDOM GRAPHS
[8]   Duplication models for biological networks [J].
Chung, F ;
Lu, LY ;
Dewey, TG ;
Galas, DJ .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (05) :677-687
[9]   Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae [J].
Dezso, Z ;
Oltvai, ZN ;
Barabási, AL .
GENOME RESEARCH, 2003, 13 (11) :2450-2454
[10]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187