Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death

被引:430
作者
Tiwari, BS [1 ]
Belenghi, B [1 ]
Levine, A [1 ]
机构
[1] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Dept Plant Sci, IL-91904 Jerusalem, Israel
关键词
D O I
10.1104/pp.010999
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H2O2 production, depletion of ATP, and cell death. The increased generation of H2O2 also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H2O2 amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.
引用
收藏
页码:1271 / 1281
页数:11
相关论文
共 51 条
[1]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[2]   Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants [J].
Balk, J ;
Leaver, CJ ;
McCabe, PF .
FEBS LETTERS, 1999, 463 (1-2) :151-154
[3]   L-TRANS-EPOXYSUCCINYL-LEUCYLAMIDO(4-GUANIDINO)BUTANE (E-64) AND ITS ANALOGS AS INHIBITORS OF CYSTEINE PROTEINASES INCLUDING CATHEPSINS B, H AND L [J].
BARRETT, AJ ;
KEMBHAVI, AA ;
BROWN, MA ;
KIRSCHKE, H ;
KNIGHT, CG ;
TAMAI, M ;
HANADA, K .
BIOCHEMICAL JOURNAL, 1982, 201 (01) :189-198
[4]   Early release and subsequent caspase-mediated degradation of cytochrome c in apoptotic cerebellar granule cells [J].
Bobba, A ;
Atlante, A ;
Giannattasio, S ;
Sgaramella, G ;
Calissano, P ;
Marra, E .
FEBS LETTERS, 1999, 457 (01) :126-130
[5]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[6]   Hydrogen peroxide generation by higher plant mitochondria oxidizing complex I or complex II substrates [J].
Braidot, E ;
Petrussa, E ;
Vianello, A ;
Macrì, F .
FEBS LETTERS, 1999, 451 (03) :347-350
[7]   PERMEABILIZATION OF THE INNER MITOCHONDRIAL-MEMBRANE BY CA2+ IONS IS STIMULATED BY T-BUTYL HYDROPEROXIDE AND MEDIATED BY REACTIVE OXYGEN SPECIES GENERATED BY MITOCHONDRIA [J].
CASTILHO, RF ;
KOWALTOWSKI, AJ ;
MEINICKE, AR ;
BECHARA, EJH ;
VERCESI, AE .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (03) :479-486
[8]   The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking [J].
Castilho, RF ;
Kowaltowski, AJ ;
Vercesi, AE .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1996, 28 (06) :523-529
[9]   Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light [J].
Chamnongpol, S ;
Willekens, H ;
Langebartels, C ;
VanMontagu, M ;
Inze, D ;
VanCamp, W .
PLANT JOURNAL, 1996, 10 (03) :491-503
[10]   REGULATION OF ALTERNATIVE OXIDASE ACTIVITY IN HIGHER-PLANTS [J].
DAY, DA ;
WISKICH, JT .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1995, 27 (04) :379-385