Study of the characteristics and the performance of self-made nanoporous polyethersulfone membranes

被引:120
作者
Boussu, K [1 ]
Vandecasteele, C [1 ]
Van der Bruggen, B [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, Lab Appl Phys Chem & Environm Technol, B-3001 Louvain, Belgium
关键词
nanoporous membranes; polyethersulfone; phase inversion;
D O I
10.1016/j.polymer.2006.03.048
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyethersulfone (PES) membranes were prepared in this study by using the DIPS technique (diffusion induced phase separation) in view of a better insight into the performance of commercial polyethersulfone membranes and a verification for the limited information given by the manufacturer. During this process, a lot of conditions influence the final membrane structure. Beside the choice of the solvent (dimethylformamide (DMF) or N-methyl-pyrrolidone (NMP)), it was shown that the concentration of the polymer and the relative air humidity are the most crucial ones. Optimizing these factors led to reproducible membranes, which were characterized for hydrophobicity, roughness, surface charge and molecular weight cut-off (MWCO). The performance was studied by doing cross-flow filtration experiments with aqueous solutions of uncharged and charged component. Although the self-made membranes were characterized by a larger MWCO in comparison with commercial polyethersulfone nanofiltration membranes, the retention for the self-made membranes was almost equal to or even higher than the commercial membranes in the case of filtrating negatively, respectively, positively charged component. The high retention of the self-made membranes for positively charged component can be explained by adsorption experiments or by surface charge measurements before and after filtration. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3464 / 3476
页数:13
相关论文
共 38 条
[1]  
Baik KJ, 2001, KOREA POLYM J, V9, P285
[2]   Asymmetric polysulfone and polyethersulfone membranes:: effects of thermodynamic conditions during formation on their performance [J].
Barth, C ;
Gonçalves, MC ;
Pires, ATN ;
Roeder, J ;
Wolf, BA .
JOURNAL OF MEMBRANE SCIENCE, 2000, 169 (02) :287-299
[3]   Evidence of ternary interaction parameters for polymer solutions in mixed solvents from headspace-gas chromatography [J].
Barth, C ;
Wolf, BA .
POLYMER, 2000, 41 (24) :8587-8596
[4]  
Barton BF, 1997, J POLYM SCI POL PHYS, V35, P569, DOI 10.1002/(SICI)1099-0488(199703)35:4<569::AID-POLB5>3.0.CO
[5]  
2-L
[6]  
BOUSSU K, IN PRESS DESALINATIO
[7]   Modeling of the adsorption of organic compounds on polymeric nanofiltration membranes in solutions containing two compounds [J].
Braeken, L ;
Boussu, K ;
Van der Bruggen, B ;
Vandecasteele, C .
CHEMPHYSCHEM, 2005, 6 (08) :1606-1612
[8]   Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds [J].
Braeken, L ;
Ramaekers, R ;
Zhang, Y ;
Maes, G ;
Van der Bruggen, B ;
Vandecasteele, C .
JOURNAL OF MEMBRANE SCIENCE, 2005, 252 (1-2) :195-203
[9]   Preparation, characterization and performance of polyethersulfone ultrafiltration membranes [J].
Chaturvedia, BK ;
Ghosh, AK ;
Ramachandhran, V ;
Trivedi, MK ;
Hanra, MS ;
Misra, BM .
DESALINATION, 2001, 133 (01) :31-40
[10]   Nanofiltration of nonionic surfactants: Effect of the molecular weight cutoff and contact angle on flux behavior [J].
Cornelis, G ;
Boussu, K ;
Van der Bruggen, B ;
Devreese, I ;
Vandecasteele, C .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (20) :7652-7658