A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme

被引:161
作者
Hilloowala, RM
Sharaf, AM
机构
[1] Electrical Engineering Department, University of New Brunswick, Fredericton
关键词
D O I
10.1109/28.485813
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents a rule-based fuzzy logic controller to control the output power of a pulse width modulated (PWM) inverter used in a stand alone wind energy conversion scheme (SAWECS). The self-excited induction generator used in SAWECS has the inherent problem of fluctuations in the magnitude and frequency of its terminal voltage with changes in wind velocity and load. To overcome this drawback the variable magnitude, variable frequency voltage at the generator terminals is rectified and the de power is transferred to the load through a PWM inverter. The objective is to track and extract maximum power from the wind energy system (WES) and transfer this power to the local isolated load. This is achieved by using the fuzzy logic controller which regulates the modulation index of the PWM inverter based on the input signals: the power error e = (P-ref - P-o) and its rate of change over dot e. These input signals are fuzzified, that is defined by a set of linguistic labels characterized by their membership functions predefined for each class. Using a set of 49 rules which relate the fuzzified input signals (e.overdot e) to the fuzzy controller output U, fuzzy set theory and associated fuzzy logic operations, the fuzzy controller's output is obtained. The fuzzy set describing the controller's output (in terms of linguistic labels) is defuzzified to obtain the actual analog (numerical) output signal which is then used to control the PWM inverter and ensure complete utilization of the available wind energy. The proposed rule-based fuzzy logic controller is simulated and the results are experimentally verified on a scaled down laboratory prototype of the SAWECS.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 12 条
[1]  
COX E, 1992, IEEE SPECTRUM OCT
[2]  
HILLOOWALA RM, 1994, IEEE PES WINT M NEW
[3]  
HILLOOWALA RM, 1991, P SE S SYST THEOR S
[4]   DESIGN OF FUZZY POWER-SYSTEM STABILIZERS FOR MULTIMACHINE POWER-SYSTEMS [J].
HSU, YY ;
CHENG, CH .
IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION, 1990, 137 (03) :233-238
[5]  
Johnson G.L., 1985, Wind Energy Systems
[6]   FUZZY SETS FOR MAN-MACHINE INTERACTION [J].
MACVICARWHELAN, PJ .
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1976, 8 (06) :687-697
[7]  
Mohan N., 1978, IEEE PES WINT M NEW
[8]   MODELING AND CONTROL DESIGN FOR WIND ENERGY POWER CONVERSION SCHEME USING SELF-EXCITED INDUCTION GENERATOR [J].
NATARAJAN, K ;
SHARAF, AM ;
SIVAKUMAR, S ;
NAGANATHAN, S .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1987, 2 (03) :506-512
[9]   CONTROLLABLE DC POWER-SUPPLY FROM WIND-DRIVEN SELF-EXCITED INDUCTION MACHINES [J].
WATSON, DB ;
ARRILLAGA, J ;
DENSEM, T .
PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1979, 126 (12) :1245-1248
[10]  
ZADEH L, 1978, IEEE T SYST MAN CYB, V28, P28