Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses

被引:69
作者
Palmer, Tom M. [1 ]
Thompson, John R. [1 ]
Tobin, Martin D. [2 ]
Sheehan, Nuala A. [2 ]
Burton, Paul R. [2 ]
机构
[1] Univ Leicester, Dept Hlth Sci, Leicester LE1 7RH, Leics, England
[2] Univ Leicester, Dept Hlth Sci & Genet, Leicester LE1 7RH, Leics, England
基金
英国医学研究理事会;
关键词
instrumental-variable analysis; Mendelian randomization; bias; unobserved confounding;
D O I
10.1093/ije/dyn080
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background Mendelian randomization uses a carefully selected gene as an instrumental-variable (IV) to test or estimate an association between a phenotype and a disease. Classical IV analysis assumes linear relationships between the variables, but disease status is often binary and modelled by a logistic regression. When the linearity assumption between the variables does not hold the IV estimates will be biased. The extent of this bias in the phenotype-disease log odds ratio of a Mendelian randomization study is investigated. Methods Three estimators termed direct, standard IV and adjusted IV, of the phenotype-disease log odds ratio are compared through a simulation study which incorporates unmeasured confounding. The simulations are verified using formulae relating marginal and conditional estimates given in the Appendix Results The simulations show that the direct estimator is biased by unmeasured confounding factors and the standard IV estimator is attenuated towards the null. Under most circumstances the adjusted IV estimator has the smallest bias, although it has inflated type I error when the unmeasured confounders have a large effect. Conclusions In a Mendelian randomization study with a binary disease outcome the bias associated with estimating the phenotype-disease log odds ratio may be of practical importance and so estimates should be subject to a sensitivity analysis against different amounts of hypothesized confounding.
引用
收藏
页码:1161 / 1168
页数:8
相关论文
共 28 条
[1]  
Amemiya T., 1974, J. Econ, V2, P105, DOI DOI 10.1016/0304-4076(74)90033-5
[2]  
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
[3]  
[Anonymous], 1958, INTRO MULTIVARIATE S
[4]  
[Anonymous], 2000, CAUSALITY
[5]  
Bowden RJ., 1984, INSTRUMENTAL VARIABL
[6]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[7]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[8]   Mendelian randomization as an instrumental variable approach to causal inference [J].
Didelez, Vanessa ;
Sheehan, Nuala .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) :309-330
[9]  
Greenland S, 1999, STAT SCI, V14, P29
[10]   An introduction to instrumental variables for epidemiologists [J].
Greenland, S .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2000, 29 (04) :722-729