Comparison of regional cerebral blood flow with transcranial magnetic stimulation at different forces

被引:46
作者
Dettmers, C
Ridding, MC
Stephan, KM
Lemon, RN
Rothwell, JC
Frackowiak, RSJ
机构
[1] UNIV LONDON,INST NEUROL,LEOPOLD MULLER FUNCT IMAGING LAB,MRC,HUMAN MOVEMENT & BALANCE UNIT,LONDON WC1N 3BG,ENGLAND
[2] UNIV LONDON,INST NEUROL,SOBELL DEPT NEUROPHYSIOL,LONDON WC1N 3BG,ENGLAND
关键词
functional imaging; force; motor cortex; positron emission tomography; transcallosal inhibition;
D O I
10.1152/jappl.1996.81.2.596
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
This study's objective was to investigate regional cerebral blood flow (rCBF) within the primary motor cortex (M1) and to compare it with thresholds of transcranial magnetic stimulation (TMS) and electromyographic recordings during exertion of different force levels with the right index finger. Quantitative electromyographic recordings, TMS, and positron emission tomography scans were performed while five and six volunteers, respectively, pressed a Morse key repetitively or with constant force with the right hand at five different force levels: 5, 10, 20, 40, and 60% of the individual's maximum voluntary contraction (MYC). Although at 5% MVC muscle activity was restricted to the first dorsal interosseus muscle, superficial finger flexors, and extensors, there was progressive involvement of proximal muscles during finger flexion with increasing force. rCBF increased logarithmically in the contralateral M1 with increasing force. In ipsilateral M1, rCBF decreased at 5% MVC and then increased logarithmically at higher force levels. TMS thresholds in the contralateral hemisphere declined logarithmically to reach a plateau at high force levels. The threshold in the ipsilateral hemisphere decreased slightly at high force levels. The logarithmic increase of rCBF and decrease of TMS thresholds in the contralateral hemisphere suggest related underlying physiological phenomena; increased cortical synaptic activity and increased excitability. It is suggested that the pronounced ipsilateral rCBF alterations reflect transcallosal inhibition and are more prominent during repetitive movements (as used in the positron emission tomography study) than during the generation of a constant force (as exerted during TMS).
引用
收藏
页码:596 / 603
页数:8
相关论文
共 24 条
[1]   FUNCTIONAL COOPERATIVITY OF HUMAN CORTICAL MOTOR AREAS DURING SELF-PACED SIMPLE FINGER MOVEMENTS - A HIGH-RESOLUTION MRI STUDY [J].
BOECKER, H ;
KLEINSCHMIDT, A ;
REQUARDT, M ;
HANICKE, W ;
MERBOLDT, KD ;
FRAHM, J .
BRAIN, 1994, 117 :1231-1239
[2]   REGIONAL CEREBRAL BLOOD-FLOW DURING VOLUNTARY ARM AND HAND MOVEMENTS IN HUMAN-SUBJECTS [J].
COLEBATCH, JG ;
DEIBER, MP ;
PASSINGHAM, RE ;
FRISTON, KJ ;
FRACKOWIAK, RSJ .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 65 (06) :1392-1401
[3]   RELATION BETWEEN CEREBRAL-ACTIVITY AND FORCE IN THE MOTOR AREAS OF THE HUMAN BRAIN [J].
DETTMERS, C ;
FINK, GR ;
LEMON, RN ;
STEPHAN, KM ;
PASSINGHAM, RE ;
SILBERSWEIG, D ;
HOLMES, A ;
RIDDING, MC ;
BROOKS, DJ ;
FRACKOWIAK, RSJ .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 74 (02) :802-815
[4]   MOTOR CORTEX CONTROL OF FINELY GRADED FORCES [J].
EVARTS, EV ;
FROMM, C ;
KROLLER, J ;
JENNINGS, V .
JOURNAL OF NEUROPHYSIOLOGY, 1983, 49 (05) :1199-1215
[5]   INTERHEMISPHERIC INHIBITION OF THE HUMAN MOTOR CORTEX [J].
FERBERT, A ;
PRIORI, A ;
ROTHWELL, JC ;
DAY, BL ;
COLEBATCH, JG ;
MARSDEN, CD .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 453 :525-546
[6]   FOCAL PHYSIOLOGICAL UNCOUPLING OF CEREBRAL BLOOD-FLOW AND OXIDATIVE-METABOLISM DURING SOMATOSENSORY STIMULATION IN HUMAN-SUBJECTS [J].
FOX, PT ;
RAICHLE, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (04) :1140-1144
[7]  
FRACKOWIAK RSJ, 1994, J ANAT, V184, P211
[8]   THE RELATIONSHIP BETWEEN GLOBAL AND LOCAL CHANGES IN PET SCANS [J].
FRISTON, KJ ;
FRITH, CD ;
LIDDLE, PF ;
DOLAN, RJ ;
LAMMERTSMA, AA ;
FRACKOWIAK, RSJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1990, 10 (04) :458-466
[9]   COMPARING FUNCTIONAL (PET) IMAGES - THE ASSESSMENT OF SIGNIFICANT CHANGE [J].
FRISTON, KJ ;
FRITH, CD ;
LIDDLE, PF ;
FRACKOWIAK, RSJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1991, 11 (04) :690-699
[10]   HUMAN FUNCTIONAL-ANATOMY OF VISUALLY GUIDED FINGER MOVEMENTS [J].
GRAFTON, ST ;
MAZZIOTTA, JC ;
WOODS, RP ;
PHELPS, ME .
BRAIN, 1992, 115 :565-587