Modelling parasite drug resistance: lessons for management and control strategies

被引:37
作者
Hastings, IM [1 ]
机构
[1] Univ Liverpool, Liverpool Sch Trop Med, Liverpool L3 5QA, Merseyside, England
关键词
drug; resistance; malaria; antibiotics; bacteria; anthelmintics; helminths;
D O I
10.1046/j.1365-3156.2001.00800.x
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Mathematical models of the evolution of drug resistance in infectious diseases are predominantly concentrated in three main areas: antimalarial, antibiotic and anthelmintic resistance. There appears to be little or no cross-reference between them. This literature was examined to identify factors that influence the evolution of drug resistance irrespective of the species and drug under study. The aim is to provide non-technical readers with a basic qualitative understanding of the issues and pitfalls involved in designing drug treatment regimens to minimize the evolution of resistance. The principal factors determining the rate at which resistance evolves appear to be (i) the starting frequency of resistance, (ii) the level and pattern of drug use, (iii) the drug's pharmacokinetic properties, (iv) the number of genes required to encode resistance, (v) the level of sexual recombination in the parasite population, (vi) intrahost dynamics and, in particular, whether 'crowding' effects are present, (vii) the genetic basis of resistance and (viii) the number of individual parasites in an infection. The relative importance of these factors depends on the biology of the organisms under consideration and external factors such as the extent to which the infrastructure of health care delivery constrains the practicalities of drug regimens.
引用
收藏
页码:883 / 890
页数:8
相关论文
共 32 条
[1]  
ANDERSON R M, 1991
[2]  
[Anonymous], 2000, OV ANT RES
[3]  
[Anonymous], 1998, EVOLUTIONARY GENETIC
[4]   The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance [J].
Austin, DJ ;
Kristinsson, KG ;
Anderson, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :1152-1156
[5]   WORM CONTROL AND ANTHELMINTIC RESISTANCE - ADVENTURES WITH A MODEL [J].
BARNES, EH ;
DOBSON, RJ ;
BARGER, IA .
PARASITOLOGY TODAY, 1995, 11 (02) :56-63
[6]  
Barnes N M, 1990, Neuroreport, V1, P20, DOI 10.1097/00001756-199009000-00006
[7]   Evaluating treatment protocols to prevent antibiotic resistance [J].
Bonhoeffer, S ;
Lipsitch, M ;
Levin, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (22) :12106-12111
[8]   MODELING THE DEVELOPMENT OF RESISTANCE OF PLASMODIUM-FALCIPARUM TO ANTIMALARIAL-DRUGS [J].
CROSS, AP ;
SINGER, B .
TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 1991, 85 (03) :349-355
[9]   A SIMPLE-MODEL OF THE BUILDUP OF RESISTANCE TO MIXTURES OF ANTIMALARIAL-DRUGS [J].
CURTIS, CF ;
OTOO, LN .
TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 1986, 80 (06) :889-892
[10]   Multigenic drug resistance among inbred malaria parasites [J].
Dye, C ;
Williams, BG .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1378) :61-67