Noncanonical Mismatch Repair as a Source of Genomic Instability in Human Cells

被引:115
作者
Pena-Diaz, Javier [1 ]
Bregenhorn, Stephanie [1 ,2 ]
Ghodgaonkar, Medini [1 ]
Follonier, Cindy [1 ]
Artola-Boran, Mariela [1 ]
Castor, Dennis [1 ]
Lopes, Massimo [1 ]
Sartori, Alessandro A. [1 ]
Jiricny, Josef [1 ,2 ]
机构
[1] Univ Zurich, Inst Mol Canc Res, CH-8057 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Biol, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
CLASS-SWITCH RECOMBINATION; CYTIDINE DEAMINASE AID; DNA-POLYMERASE-ZETA; SOMATIC HYPERMUTATION; AFFINITY MATURATION; METHYLATING AGENTS; NUCLEAR EXTRACTS; MAMMALIAN-CELLS; BINDING-PROTEIN; BASE EXCISION;
D O I
10.1016/j.molcel.2012.07.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mismatch repair (MMR) is a key antimutagenic process that increases the fidelity of DNA replication and recombination. Yet genetic experiments showed that MMR is required for antibody maturation, a process during which the immunoglobulin loci of antigen-stimulated B cells undergo extensive mutagenesis and rearrangements. In an attempt to elucidate the mechanism underlying the latter events, we set out to search for conditions that compromise MMR fidelity. Here, we describe noncanonical MMR (ncMMR), a process in which the MMR pathway is activated by various DNA lesions rather than by mispairs. ncMMR is largely independent of DNA replication, lacks strand directionality, triggers PCNA monoubiquitylation, and promotes recruitment of the error-prone polymerase-eta to chromatin. Importantly, ncMMR is not limited to B cells but occurs also in other cell types. Moreover, it contributes to mutagenesis induced by alkylating agents. Activation of ncMMR may therefore play a role in genomic instability and cancer.
引用
收藏
页码:669 / 680
页数:12
相关论文
共 52 条
[1]   Immunoglobulin gene conversion: Insights from bursal B cells and the DT40 cell line [J].
Arakawa, H ;
Buerstedde, JM .
DEVELOPMENTAL DYNAMICS, 2004, 229 (03) :458-464
[2]   Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice [J].
Bardwell, PD ;
Woo, CJ ;
Wei, KC ;
Li, ZQ ;
Martin, A ;
Sack, SZ ;
Parris, T ;
Edelmann, W ;
Scharff, MD .
NATURE IMMUNOLOGY, 2004, 5 (02) :224-229
[3]   Repair and genetic consequences of endogenous DNA base damage in mammalian cells [J].
Barnes, DE ;
Lindahl, T .
ANNUAL REVIEW OF GENETICS, 2004, 38 :445-476
[4]   Unmasking a killer:: DNA O6-methylguanine and the cytotoxicity of methylating agents [J].
Bignami, M ;
O'Driscoll, M ;
Aquilina, G ;
Karran, P .
MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2000, 462 (2-3) :71-82
[5]   A human cell-based assay to evaluate the effects of alterations in the MLH1 mismatch repair gene [J].
Blasi, Monica Francesca ;
Ventura, Ilenia ;
Aquilina, Gabriele ;
Degan, Paolo ;
Bertario, Lucio ;
Bassi, Chiara ;
Radice, Paolo ;
Bignami, Margherita .
CANCER RESEARCH, 2006, 66 (18) :9036-9044
[6]   Methylation-induced G2/M arrest requires a full complement of the mismatch repair protein hMLH1 [J].
Cejka, P ;
Stojic, L ;
Mojas, N ;
Russell, AM ;
Heinimann, K ;
Cannavó, E ;
di Pietro, M ;
Marra, G ;
Jiricny, J .
EMBO JOURNAL, 2003, 22 (09) :2245-2254
[7]   Human mismatch repair - Reconstitution of a nick-directed bidirectional reaction [J].
Constantin, N ;
Dzantiev, L ;
Kadyrov, FA ;
Modrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) :39752-39761
[8]   Decreased frequency of somatic hypermutation and impaired affinity maturation but intact germinal center formation in mice expressing antisense RNA to DNA polymerase ζ [J].
Diaz, M ;
Verkoczy, LK ;
Flajnik, MF ;
Klinman, NR .
JOURNAL OF IMMUNOLOGY, 2001, 167 (01) :327-335
[9]   Human MutS alpha recognizes damaged DNA base pairs containing O-6-methylguanine, O-4-methylthymine, or the cisplatin-d(GpG) adduct [J].
Duckett, DR ;
Drummond, JT ;
Murchie, AIH ;
Reardon, JT ;
Sancar, A ;
Lilley, DM ;
Modrich, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (13) :6443-6447
[10]  
FANG WH, 1993, J BIOL CHEM, V268, P11838