MCM7 amplification and overexpression are associated with prostate cancer progression

被引:163
作者
Ren, B
Yu, G
Tseng, GC
Cieply, K
Gavel, T
Michalopoulos, G
Yu, YP
Luo, JH
机构
[1] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Sch Med, Dept Urol, Pittsburgh, PA USA
[3] Univ Pittsburgh, Sch Med, Dept Biostat, Pittsburgh, PA 15213 USA
关键词
MCM7; metastasis; prostate cancer; amplification;
D O I
10.1038/sj.onc.1209134
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genomic DNA profiles of prostate cancers with aggressive features were compared to the profiles of matched normal DNA to identify genes that are selectively amplified in the cancer cells. One of the identified genes, MCM7, which is a component of the DNA replication licensing complex, has been studied extensively both at the DNA and protein levels in human prostate tissues. Approximately half of the prostate cancer specimens studied showed MCM7 gene amplification, and 60% of the aggressive prostate cancer specimens had increased MCM7 protein expression. Amplification or overexpression of MCM7 was significantly associated with relapse, local invasion and a worse tumor grade. Constitutive expression of MCM7 in a human prostate cancer cell line, DU145, resulted in markedly increased DNA synthesis and cell proliferation compared to vector-only controls, and an increased cell invasion in vitro. Indeed, MCM7 overexpression produced primary tumors 12 times larger than vector-only controls and resulted in a rapid demise of mice bearing those tumors. These studies implicate MCM7, and the DNA replication licensing gene family, in prostate cancer progression, growth and invasion.
引用
收藏
页码:1090 / 1098
页数:9
相关论文
共 25 条
[1]   Components and dynamics of DNA replication complexes in S-cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase [J].
Aparicio, OM ;
Weinstein, DM ;
Bell, SP .
CELL, 1997, 91 (01) :59-69
[2]   Replication licensing - defining the proliferative state? [J].
Blow, JJ ;
Hodgson, B .
TRENDS IN CELL BIOLOGY, 2002, 12 (02) :72-78
[3]  
Brake T, 2003, CANCER RES, V63, P8173
[4]   Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays [J].
Clark, J ;
Edwards, S ;
Feber, A ;
Flohr, P ;
John, M ;
Giddings, I ;
Crossland, S ;
Stratton, MR ;
Wooster, R ;
Campbell, C ;
Cooper, CS .
ONCOGENE, 2003, 22 (08) :1247-1252
[5]   Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis [J].
Cromer, A ;
Carles, A ;
Millon, R ;
Ganguli, G ;
Chalmel, F ;
Lemaire, F ;
Young, J ;
Dembélé, D ;
Thibault, C ;
Muller, D ;
Poch, O ;
Abecassis, J ;
Wasylyk, B .
ONCOGENE, 2004, 23 (14) :2484-2498
[6]   Genome-wide detection of LOH in prostate cancer using human SNP microarray technology [J].
Dumur, CI ;
Dechsukhum, C ;
Ware, JL ;
Cofield, SS ;
Best, AM ;
Wilkinson, DS ;
Garrett, CT ;
Ferreira-Gonzalez, A .
GENOMICS, 2003, 81 (03) :260-269
[7]   MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts [J].
Edwards, MC ;
Tutter, AV ;
Cvetic, C ;
Gilbert, CH ;
Prokhorova, TA ;
Walter, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :33049-33057
[8]   Cell cycle regulation of human CDC6 protein - Intracellular localization, interaction with the human MCM complex, and CDC2 kinase-mediated hyperphosphorylation [J].
Fujita, M ;
Yamada, C ;
Goto, H ;
Yokoyama, N ;
Kuzushima, K ;
Inagaki, M ;
Tsurumi, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (36) :25927-25932
[9]   A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex [J].
Ishimi, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (39) :24508-24513
[10]   Cancer statistics, 2005 [J].
Jemal, A ;
Murray, T ;
Ward, E ;
Samuels, A ;
Tiwari, RC ;
Ghafoor, A ;
Feuer, EJ ;
Thun, MJ .
CA-A CANCER JOURNAL FOR CLINICIANS, 2005, 55 (01) :10-30