A k-segments algorithm for finding principal curves

被引:87
作者
Verbeek, JJ [1 ]
Vlassis, N [1 ]
Kröse, B [1 ]
机构
[1] Univ Amsterdam, Inst Comp Sci, NL-1098 SJ Amsterdam, Netherlands
关键词
dimension reduction; feature extraction; polygonal line; principal curve; unsupervised learning;
D O I
10.1016/S0167-8655(02)00032-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an incremental method to find principal curves. Line segments are fitted and connected to form polygonal lines (PLs). New segments are inserted until a performance criterion is met. Experimental results illustrate the performance of the method compared to other existing approaches. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1009 / 1017
页数:9
相关论文
共 13 条
[1]   GTM: The generative topographic mapping [J].
Bishop, CM ;
Svensen, M ;
Williams, CKI .
NEURAL COMPUTATION, 1998, 10 (01) :215-234
[2]  
De'ath G, 1999, ECOLOGY, V80, P2237, DOI 10.1890/0012-9658(1999)080[2237:PCANTF]2.0.CO
[3]  
2
[4]   GROWING CELL STRUCTURES - A SELF-ORGANIZING NETWORK FOR UNSUPERVISED AND SUPERVISED LEARNING [J].
FRITZKE, B .
NEURAL NETWORKS, 1994, 7 (09) :1441-1460
[5]  
Gersho A., 1992, VECTOR QUANTIZATION
[6]   PRINCIPAL CURVES [J].
HASTIE, T ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :502-516
[7]   Learning and design of principal curves [J].
Kégl, B ;
Krzyzak, A ;
Linder, T ;
Zeger, K .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (03) :281-297
[8]  
Kohonen T., 1995, Self-Organizing Maps
[9]  
LAWLER EL, 1985, SERIES DISCRETE MATH
[10]  
Ripley B. D., 1996, Pattern Recognition and Neural Networks