Sp3 represses gene expression via the titration of promoter-specific transcription factors

被引:34
作者
Kennett, SB [1 ]
Moorefield, KS [1 ]
Horowitz, JM [1 ]
机构
[1] N Carolina State Univ, Coll Vet Med, Dept Anat Physiol Sci & Radiol, Raleigh, NC 27606 USA
关键词
D O I
10.1074/jbc.M108661200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have determined previously that Sp3 encodes three distinct gene products as follows: a full-length protein (Sp3) that is an activator of transcription and two isoforms (M1 and M2) derived via internal translational initiation that function as transcriptional repressors. To identify amino acids and functions required for transcriptional repression, we employed PCR-directed mutagenesis to create a panel of mutated M2 proteins. Biochemical and functional analyses of these mutated proteins indicate that functions encoded by the M2 carboxyl terminus, such as DNA binding activity and the capacity to form multimeric complexes, are not required or sufficient for transcriptional repression. Instead, a 93-amino acid portion of the trans-activation domain was shown to be the minimal portion of M2 required to block Sp-dependent gene expression. Transcriptional analysis of three Sp-dependent promoters showed that mutations sustained by many M2 proteins result in promoter-specific effects. Regions of M2 required for physical interactions with five TATA box-associated factors (TAF(II)s) were mapped, and mutations that disrupt the interaction of M2 with two of these proteins, TAF(II)70 and TAF(II)40, were identified. We conclude that Sp3-mediated transcriptional repression is due, at least in part, to competition for promoter-specific transcription factors.
引用
收藏
页码:9780 / 9789
页数:10
相关论文
共 46 条
[1]   The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells [J].
Biggs, JR ;
Kudlow, JE ;
Kraft, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (02) :901-906
[2]   Cooperation of E2F-p130 and Sp1-pRb complexes in repression of the Chinese hamster dhfr gene [J].
Chang, YC ;
Illenye, S ;
Heintz, NH .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (04) :1121-1131
[3]   CLONING OF AN INTRINSIC HUMAN TFIID SUBUNIT THAT INTERACTS WITH MULTIPLE TRANSCRIPTIONAL ACTIVATORS [J].
CHIANG, CM ;
ROEDER, RG .
SCIENCE, 1995, 267 (5197) :531-536
[4]  
CORNWELL MM, 1993, J BIOL CHEM, V268, P15347
[5]   ANALYSIS OF SP1 INVIVO REVEALS MULTIPLE TRANSCRIPTIONAL DOMAINS, INCLUDING A NOVEL GLUTAMINE-RICH ACTIVATION MOTIF [J].
COUREY, AJ ;
TJIAN, R .
CELL, 1988, 55 (05) :887-898
[6]   Sp1 mediates glucose activation of the acetyl-CoA carboxylase promoter [J].
Daniel, S ;
Kim, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (03) :1385-1392
[7]  
DATTA PK, 1995, MOL CELL BIOL, V15, P5444
[8]   FUNCTIONAL-ANALYSIS OF THE TRANSFORMING GROWTH-FACTOR-BETA RESPONSIVE ELEMENTS IN THE WAF1/CIP1/P21 PROMOTER [J].
DATTO, MB ;
YU, Y ;
WANG, XF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28623-28628
[9]   Hypoxia regulates β-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element [J].
Discher, DJ ;
Bishopric, NH ;
Wu, XS ;
Peterson, CA ;
Webster, KA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (40) :26087-26093
[10]   ISOLATION OF COACTIVATORS ASSOCIATED WITH THE TATA-BINDING PROTEIN THAT MEDIATE TRANSCRIPTIONAL ACTIVATION [J].
DYNLACHT, BD ;
HOEY, T ;
TJIAN, R .
CELL, 1991, 66 (03) :563-576