We analyze and compare simulations and controlling processes of the past 60 years and possible future short-and long-term development of phosphorus and nitrogen loading from the Swedish Norrstrom drainage basin to the Baltic Sea under different inland source management scenarios. Results indicate that both point and agricultural source inputs may need to be decreased by at least 40% in order to reach a long-term sustainable 30% reduction of anthropogenic coastal nitrogen loading, as required by national environmental goals. A corresponding 20% anthropogenic phosphorus load reduction goal may be reached in the short term by analogous combined 40% source input reduction, but appears impossible to maintain as a long-term achievement by inland source abatement only. In general, realistic quantification of the slow subsurface nutrient transport and accumulation-release dynamics may be essential for accurately predicting and managing nutrient loading to surface and coastal waters.