Binding of 5′-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism

被引:126
作者
Hanzelmann, P [1 ]
Schindelin, H
机构
[1] SUNY Stony Brook, Dept Biochem, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Ctr Struct Biol, Stony Brook, NY 11794 USA
关键词
iron-sulfur; radicals; molybdenum cofactor; GTP cyclohydrolase;
D O I
10.1073/pnas.0510711103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The first step in molybdenum cofactor biosynthesis, the conversion of 5'-GTP to precursor Z, an oxygen-sensitive tetrahydropyranopterin is catalyzed by the S-adenosylmethionine (SAM)-dependent enzyme MoaA and the accessory protein MoaC. This reaction involves the radical-initiated intramolecular rearrangement of the guanine CS atom. MoaA harbors an N-terminal [4Fe-4S] cluster, which is involved in the reductive cleavage of SAM and generates a 5'-deoxyadenosyl radical (5'-dA(.)), and a C-terminal [4Fe-4S] cluster presumably involved in substrate binding and/or activation. Biochemical studies identified residues involved in 5'-GTP binding and the determinants of nucleotide specificity. The crystal structure of MoaA in complex with 5'-GTP confirms the biochemical data and provides valuable insights into the subsequent radical reaction. MoaA binds 5'-GTP with high affinity and interacts through its C-terminal [4Fe-4S] cluster with the guanine N1 and N2 atoms, in a yet uncharacterized binding mode. The tightly anchored triphosphate moiety prevents the escape of radical intermediates. This structure also visualizes the L-Met and 5'-dA cleavage products of SAM. Rotation of the 5'-dA ribose and/or conformational changes of the guanosine are proposed to bring the 5'-deoxyadenosyl radical into close proximity of either the ribose C2' and C3' or the guanine C8 carbon atoms leading to hydrogen abstraction.
引用
收藏
页码:6829 / 6834
页数:6
相关论文
共 36 条
[1]  
BACHER A, 1991, CHEM BIOCH FLAVOPROT, V1, P215
[2]   Radical carbon skeleton rearrangements:: Catalysis by coenzyme B12-dependent mutases [J].
Banerjee, R .
CHEMICAL REVIEWS, 2003, 103 (06) :2083-2094
[3]   Iron-sulfur proteins: ancient structures, still full of surprises [J].
Beinert, H .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2000, 5 (01) :2-15
[4]   Iron-sulfur clusters: Nature's modular, multipurpose structures [J].
Beinert, H ;
Holm, RH ;
Munck, E .
SCIENCE, 1997, 277 (5326) :653-659
[5]   Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein [J].
Beinert, H ;
Kennedy, MC ;
Stout, CD .
CHEMICAL REVIEWS, 1996, 96 (07) :2335-2373
[6]   Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme [J].
Berkovitch, F ;
Nicolet, Y ;
Wan, JT ;
Jarrett, JT ;
Drennan, CL .
SCIENCE, 2004, 303 (5654) :76-79
[7]   Probing the energetic and structural role of amino acid/nucleobase cation-π interactions in protein-ligand complexes [J].
Biot, C ;
Buisine, E ;
Kwasigroch, JM ;
Wintjens, R ;
Rooman, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (43) :40816-40822
[8]  
BOCHNER BR, 1982, J BIOL CHEM, V257, P9759
[9]   Histidine 179 mutants of GTP cyclohydrolase I catalyze the formation of 2-amino-5-formylamino-8-ribofuranosylamino-4(3H)-pyrimidinone triphosphate [J].
Bracher, A ;
Fischer, M ;
Eisenreich, W ;
Ritz, H ;
Schramek, N ;
Boyle, P ;
Gentili, P ;
Huber, R ;
Nar, H ;
Auerbach, G ;
Bacher, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (24) :16727-16735
[10]  
BROWN GM, 1985, FOLATES PTERINS, V2, P299