r(D) oscillators with arbitrary D>0 and perturbation expansions with Sturmians

被引:15
作者
Znojil, M
机构
[1] Ustav Jaderne Fyziky AV CR
关键词
D O I
10.1063/1.531932
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In contrast to widespread belief the current Rayleigh-Schrodinger perturbation theory may provide an easy description of double well oscillators and/or of the strongly anharmonic forces with an arbitrary power-law asymptotical growth. One has only to work in a suitable Sturmian basis. The feasibility and numerical efficiency of the construction is illustrated on a few one-dimensional one-body examples. (C) 1997 American Institute of Physics.
引用
收藏
页码:5087 / 5097
页数:11
相关论文
共 47 条
[1]   LARGE-ORDER PERTURBATION EXPANSIONS FOR THE CHARGED HARMONIC-OSCILLATOR [J].
AGUILERANAVARRO, VC ;
FERNANDEZ, FM ;
GUARDIOLA, R ;
ROS, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23) :6379-6392
[2]  
[Anonymous], ADVAN QUANTUM CHEM
[3]  
BANERJEE K, 1978, PHYS REV D, V18, P4767, DOI 10.1103/PhysRevD.18.4767
[4]   ENERGY EIGENVALUES FOR DOUBLE-WELL OSCILLATORS WITH MIXED CUBIC-QUARTIC ANHARMONICITIES [J].
BANSAL, M ;
SRIVASTAVA, S ;
MAMTA ;
VISHWAMITTAR .
CHEMICAL PHYSICS LETTERS, 1992, 195 (5-6) :505-508
[5]   Summation of power series by continued exponentials [J].
Bender, CM ;
Vinson, JP .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) :4103-4119
[6]  
Brezinski C., 1991, Extrapolation Methods, Theory and Practice, DOI DOI 10.1016/B978-0-444-88814-3.50004-0
[7]  
CASWELL WE, 1979, ANN PHYS-NEW YORK, V123, P153, DOI 10.1016/0003-4916(79)90269-0
[8]  
CHAR BW, 1992, 1 LEAVES TUTORIAL IN, V5
[9]  
Constantinescu F., 1971, PROBLEMS QUANTUM MEC
[10]  
COOPER F, 1995, PHYS REP, V251, P268