Wave fronts in a bistable reaction-diffusion system with density-dependent diffusivity

被引:12
作者
Strier, DE
Zanette, DH
Wio, HS
机构
[1] COMIS NACL ENERGIA ATOM,CTR ATOM BARILOCHE,RA-8400 SAN CARLOS BARILO,RIO NEGRO,ARGENTINA
[2] UNC,INST BALSEIRO,RA-8400 SAN CARLOS BARILO,RIO NEGRO,ARGENTINA
[3] CONSEJO NACL INVEST CIENT & TECN,BUENOS AIRES,DF,ARGENTINA
来源
PHYSICA A | 1996年 / 226卷 / 3-4期
关键词
D O I
10.1016/0378-4371(95)00397-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain wave-front solutions for a one-dimensional bistable reaction-diffusion model with density-dependent diffusivity. These solutions - which are expected to stand for the asymptotic behaviour of a wide class of initial conditions - should describe the evolution of the walls of constant density domains, spontaneously formed in this system. The piecewise linearized form of the reaction terms and of the diffusivity makes it possible to obtain analytical results for a situation of interest in many real applications - namely, a diffusivity that changes abruptly at a critical value of the density. We pay particular attention to the dependence of the wave-front velocity on the relevant parameters, and are able to outline some physical arguments that explain its features.
引用
收藏
页码:310 / 323
页数:14
相关论文
共 29 条
[1]   STABILITY OF INHOMOGENEOUS STATIONARY STATES FOR THE HOT-SPOT MODEL OF A SUPERCONDUCTING MICROBRIDGE [J].
BEDEAUX, D ;
MAZUR, P .
PHYSICA A, 1981, 105 (1-2) :1-30
[2]  
Crank J., 1956, The Mathematics of Diffusion
[3]  
Doi M., 1986, The theory of polymer dynamics
[4]  
FIFE P, 1979, LECTURE NOTES BIOMAT, V28
[5]  
FIFE PC, 1976, J CHEM PHYS, V64, P854
[6]  
Fukai Y, 1993, METAL HYDROGEN SYSTE
[7]  
Garduno F. S., 1994, J MATH BIOL, V33, P163, DOI DOI 10.1007/S002850050073
[8]  
GARDUNO FS, 1995, J DIFFER EQUATIONS, V117, P281, DOI DOI 10.1006/JDEQ.1995.1055
[9]  
Haken H., 1978, Synergetics
[10]   STATIONARY STRUCTURES IN A 3-DIMENSIONAL REACTION-DIFFUSION SYSTEM [J].
HASSAN, SA ;
ZANETTE, DH .
PHYSICA A, 1995, 214 (03) :435-444