Local Solutions of the Optimal Power Flow Problem

被引:163
作者
Bukhsh, Waqquas A. [1 ]
Grothey, Andreas [1 ]
McKinnon, Ken I. M. [1 ]
Trodden, Paul A. [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Global optimum; local optima; optimal power flow; OPTIMIZATION; ALGORITHM; SYSTEMS;
D O I
10.1109/TPWRS.2013.2274577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existence of locally optimal solutions to the AC optimal power flow problem (OPF) has been a question of interest for decades. This paper presents examples of local optima on a variety of test networks including modified versions of common networks. We show that local optima can occur because the feasible region is disconnected and/or because of nonlinearities in the constraints. Standard local optimization techniques are shown to converge to these local optima. The voltage bounds of all the examples in this paper are between +/- 5% and +/- 10% off-nominal. The examples with local optima are available in an online archive (http://www.maths.ed.ac.uk/optenergy/LocalOpt/) and can be used to test local or global optimization techniques for OPF. Finally we use our test examples to illustrate the behavior of a recent semi-definite programming approach that aims to find the global solution of OPF.
引用
收藏
页码:4780 / 4788
页数:9
相关论文
共 26 条
[1]   Applications of computational intelligence techniques for solving the revived optimal power flow problem [J].
AlRashidi, M. R. ;
El-Hawary, M. E. .
ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (04) :694-702
[2]  
[Anonymous], 1999, POWER SYSTEMS TEST C
[3]  
Bukhsh W. A., TEST CASE ARCH OPTIM
[4]  
Byrd RH, 2006, NONCONVEX OPTIM, V83, P35
[5]  
Carpentier J., 1962, Bull.Soc. Francaise Electricians, V8, P431
[6]   OPTIMAL POWER FLOW SOLUTIONS [J].
DOMMEL, HW ;
TINNEY, WF .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1968, PA87 (10) :1866-+
[7]   SNOPT: An SQP algorithm for large-scale constrained optimization [J].
Gill, PE ;
Murray, W ;
Saunders, MA .
SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (04) :979-1006
[8]  
Gopalakrishnan A., 2012, P 50 ANN ALL C COMM
[9]   Exploring the power flow solution space boundary [J].
Hiskens, IA ;
Davy, RJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2001, 16 (03) :389-395
[10]   A METHOD FOR FINDING A PAIR OF MULTIPLE LOAD FLOW SOLUTIONS IN BULK POWER-SYSTEMS [J].
IBA, K ;
SUZUKI, H ;
EGAWA, M ;
WATANABE, T .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1990, 5 (02) :582-591