IMAGE RESTORATION: TOTAL VARIATION, WAVELET FRAMES, AND BEYOND

被引:255
作者
Cai, Jian-Feng [1 ]
Dong, Bin [2 ]
Osher, Stanley [3 ]
Shen, Zuowei [4 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
关键词
Image restoration; total variation; variational method; (tight) wavelet frames; framelets; split Bregman; Gamma-convergence; pointwise convergence; TOTAL VARIATION MINIMIZATION; SIMULTANEOUS CARTOON; ALGORITHM; REGULARIZATION; DECONVOLUTION; DECOMPOSITION; BASES;
D O I
10.1090/S0894-0347-2012-00740-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1033 / 1089
页数:57
相关论文
共 72 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 2010, IAS Lecture Notes Series, Summer Program on The Mathematics of Image Processing
[3]  
[Anonymous], 1999, CLASSICS APPL MATH, DOI DOI 10.1137/1.9781611971088
[4]  
[Anonymous], 1992, WAVELETS THEIR APPL
[5]  
[Anonymous], 1993, BIRKHAUSER
[6]  
[Anonymous], 2002, Level Set Methods and Dynamic Implicit Surfaces
[7]   Total Generalized Variation [J].
Bredies, Kristian ;
Kunisch, Karl ;
Pock, Thomas .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03) :492-526
[8]  
Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[9]  
Cai J., 2008, ADV COMPUT MATH, P1
[10]   Restoration of chopped and nodded images by framelets [J].
Cai, Jian-Feng ;
Chan, Raymond ;
Shen, Lixin ;
Shen, Zuowei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03) :1205-1227