Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors

被引:76
作者
Naik, V [1 ]
Mauzerall, D
Horowitz, L
Schwarzkopf, MD
Ramaswamy, V
Oppenheimer, M
机构
[1] Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Princeton, NJ 08544 USA
[2] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
关键词
D O I
10.1029/2005JD005908
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The global distribution of tropospheric ozone (O-3) depends on the emission of precursors, chemistry, and transport. For small perturbations to emissions, the global radiative forcing resulting from changes in O-3 can be expressed as a sum of forcings from emission changes in different regions. Tropospheric O-3 is considered in present climate policies only through the inclusion of indirect effect of CH4 on radiative forcing through its impact on O-3 concentrations. The short-lived O-3 precursors (NOx, CO, and NMHCs) are not directly included in the Kyoto Protocol or any similar climate mitigation agreement. In this study, we quantify the global radiative forcing resulting from a marginal reduction (10%) in anthropogenic emissions of NOx alone from nine geographic regions and a combined marginal reduction in NOx, CO, and NMHCs emissions from three regions. We simulate, using the global chemistry transport model MOZART-2, the change in the distribution of global O-3 resulting from these emission reductions. In addition to the short-term reduction in O-3, these emission reductions also increase CH4 concentrations (by decreasing OH); this increase in CH4 in turn counteracts part of the initial reduction in O-3 concentrations. We calculate the global radiative forcing resulting from the regional emission reductions, accounting for changes in both O-3 and CH4. Our results show that changes in O-3 production and resulting distribution depend strongly on the geographical location of the reduction in precursor emissions. We find that the global O-3 distribution and radiative forcing are most sensitive to changes in precursor emissions from tropical regions and least sensitive to changes from midlatitude and high-latitude regions. Changes in CH4 and O-3 concentrations resulting from NOx emission reductions alone produce offsetting changes in radiative forcing, leaving a small positive residual forcing (warming) for all regions. In contrast, for combined reductions of anthropogenic emissions of NOx, CO, and NMHCs, changes in O-3 and CH4 concentrations result in a net negative radiative forcing (cooling). Thus we conclude that simultaneous reductions of CO, NMHCs, and NOx lead to a net reduction in radiative forcing due to resulting changes in tropospheric O-3 and CH4 while reductions in NOx emissions alone do not.
引用
收藏
页码:1 / 14
页数:17
相关论文
共 56 条
[1]   Global air quality and pollution [J].
Akimoto, H .
SCIENCE, 2003, 302 (5651) :1716-1719
[2]   The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations [J].
Anderson, JL ;
Balaji, V ;
Broccoli, AJ ;
Cooke, WF ;
Delworth, TL ;
Dixon, KW ;
Donner, LJ ;
Dunne, KA ;
Freidenreich, SM ;
Garner, ST ;
Gudgel, RG ;
Gordon, CT ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhost, AR ;
Lau, NC ;
Liang, Z ;
Malyshev, SL ;
Milly, PCD ;
Nath, MJ ;
Ploshay, JJ ;
Ramaswamy, V ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Soden, BJ ;
Stern, WF ;
Thompson, LA ;
Wilson, RJ ;
Wittenberg, AT ;
Wyman, BL .
JOURNAL OF CLIMATE, 2004, 17 (24) :4641-4673
[3]  
[Anonymous], 2001, REPORT INTERGOVERNME
[4]  
[Anonymous], 1990, IPCC 1 ASS REP POL S
[5]   Impacts of increased anthropogenic emissions in Asia on tropospheric ozone and climate - A global 3-D model study [J].
Berntsen, T ;
Isaksen, ISA ;
Wang, WC ;
Liang, XZ .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1996, 48 (01) :13-32
[6]   Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials [J].
Berntsen, TK ;
Fuglestvedt, JS ;
Joshi, MM ;
Shine, KP ;
Stuber, N ;
Ponater, M ;
Sausen, R ;
Hauglustaine, DA ;
Li, L .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2005, 57 (04) :283-304
[7]   Time evolution of tropospheric ozone and its radiative forcing [J].
Berntsen, TK ;
Myhre, G ;
Stordal, F ;
Isaksen, ISA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D7) :8915-8930
[8]  
BERNTSEN TK, 2005, IN PRESS CLIM CHANGE
[9]   Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects [J].
Derwent, RG ;
Collins, WJ ;
Johnson, CE ;
Stevenson, DS .
CLIMATIC CHANGE, 2001, 49 (04) :463-487
[10]  
Ehhalt D, 2001, CLIMATE CHANGE 2001: THE SCIENTIFIC BASIS, P239