Reduction of round-off errors in the extrapolation methods and its application to the integration of orbital motion

被引:10
作者
Fukushima, T
机构
[1] Spacetime Astronomy Section, Astrometry Celestrial Mechanics Div., National Astronomical Observatory, Tokyo 181
关键词
D O I
10.1086/118100
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A simple technique to reduce round-off errors was applied to the extrapolation methods to integrate ordinary differential equations. The methods with this technique are always superior to the original methods. The required computational labor remains almost the same. Numerical simulations showed that the new methods provide a few digits more precise results than the original methods. Alternatively, the new methods run roughly twice as fast as the original methods if the same accuracy is required. (C) 1996 American Astronomical Society.
引用
收藏
页码:1298 / 1301
页数:4
相关论文
共 10 条
[1]  
Brouwer D., 1937, Astron. J, V46, P149, DOI DOI 10.1086/105423
[2]   ORDER AND STEPSIZE CONTROL IN EXTRAPOLATION METHODS [J].
DEUFLHARD, P .
NUMERISCHE MATHEMATIK, 1983, 41 (03) :399-422
[3]  
Gragg W.B., 1965, SIAM J. Numer. Anal., V2, P384, DOI 10.1137/0702030
[4]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[5]  
Kinoshita H., 1989, CELESTIAL MECH, V45, P231, DOI DOI 10.1007/BF01229006
[6]  
MILANI A, 1988, CELESTIAL MECH, V43, P1, DOI 10.1007/BF01234550
[7]  
Montenbruck O, 1992, CELEST MECH DYN ASTR, V53, P59, DOI 10.1007/BF00049361
[8]   ON AN EFFICIENT AND ACCURATE METHOD TO INTEGRATE RESTRICTED 3-BODY ORBITS [J].
MURISON, MA .
ASTRONOMICAL JOURNAL, 1989, 97 (05) :1496-1509
[9]  
QUINN TR, 1995, AJ, V99, P1016
[10]  
Wilkinson J. H., 1960, Numerische Math., V2, P319, DOI [DOI 10.1007/BF01386233, 10.1007/BF01386233]