Total organic carbon disappearance kinetics for the supercritical water oxidation of monosubstituted phenols

被引:40
作者
Martino, CJ [1 ]
Savage, PE [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/es981201u
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We oxidized phenols bearing single -CH3, -C2H5, -COCH3, -CHO, -OH, -OCH3, and -NO2 substituents in supercritical water at 460 degrees C and 25.3 MPa. The observed effects of the concentrations of total organic carbon (TOC) and oxygen on the global disappearance rates for TOC were correlated by using power-law rate expressions. This kinetics study revealed that the rate of TOC disappearance is more sensitive to the oxygen concentration than is the rate of reactant disappearance. Additionally, the rate of TOC disappearance is always slower than the rate of reactant disappearance, with the ratio of these rates ranging from 0.10 to 0.65 for the different phenols at the conditions studied. The rates of TOC disappearance during supercritical water oxidation (SCWO) of these substituted phenols varied by nearly 2 orders of magnitude, showing significant effects from both the identity and location of the substituent. These substituent effects are greater for TOC disappearance kinetics than for reactant disappearance kinetics. Additionally, all of the substituted phenols exhibit faster TOC disappearance rates than does phenol. Accordingly, phenol is a good "worst case" model compound for SCWO studies. The pronounced substituent effects for TOC disappearance rates indicate that the oxidation of a common refractory intermediate is not an important feature of the SCWO networks for these phenols at the conditions studied.
引用
收藏
页码:1911 / 1915
页数:5
相关论文
共 19 条
[1]  
[Anonymous], STANDARD HDB HAZARDO
[2]  
Blaney CA, 1995, ACS SYM SER, V608, P444
[3]   KINETICS AND REACTION PATHWAYS OF PYRIDINE OXIDATION IN SUPERCRITICAL WATER [J].
CRAIN, N ;
TEBBAL, S ;
LI, LX ;
GLOYNA, EF .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (10) :2259-2268
[4]  
FRISCH M, 1996, ANN M AM I CHEM ENG
[5]   OXIDATION-KINETICS OF CARBON-MONOXIDE IN SUPERCRITICAL WATER [J].
HELLING, RK ;
TESTER, JW .
ENERGY & FUELS, 1987, 1 (05) :417-423
[6]  
JIN L, 1990, J SUPERCRIT FLUID, V3, P233
[7]   On the kinetics of phenol oxidation in supercritical water [J].
Krajnc, M ;
Levec, J .
AICHE JOURNAL, 1996, 42 (07) :1977-1984
[8]   GENERALIZED KINETIC-MODEL FOR WET OXIDATION OF ORGANIC-COMPOUNDS [J].
LI, LX ;
CHEN, PS ;
GLOYNA, EF .
AICHE JOURNAL, 1991, 37 (11) :1687-1697
[9]   KINETICS OF CO2 FORMATION FROM THE OXIDATION OF PHENOLS IN SUPERCRITICAL WATER [J].
LI, RK ;
THORNTON, TD ;
SAVAGE, PE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1992, 26 (12) :2388-2395
[10]   2-CHLOROPHENOL OXIDATION IN SUPERCRITICAL WATER - GLOBAL KINETICS AND REACTION-PRODUCTS [J].
LI, RK ;
SAVAGE, PE ;
SZMUKLER, D .
AICHE JOURNAL, 1993, 39 (01) :178-187