The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties

被引:239
作者
Horita, Z
Fujinami, T
Langdon, TG [1 ]
机构
[1] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[2] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8128581, Japan
[3] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2001年 / 318卷 / 1-2期
关键词
aluminum alloys; equal-channel angular pressing; mechanical properties; severe plastic deformation; ultrafine grains sizes;
D O I
10.1016/S0921-5093(01)01339-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The potential for scaling equal-channel angular pressing (ECAP) for use with large samples was investigated by conducting tests on an aluminum alloy using cylinders having diameters from 6-40 mm. The results show the refinement of the microstructure and the subsequent mechanical properties after pressing are independent of the initial size of the sample and, for the largest sample with a diameter of 40 mm, independent of the location within the sample at least to a distance of similar to 5 mm from the sample edge. By making direct measurements of the imposed load during ECAP, it is shown that the applied load is determined by the sample strength rather than frictional effects between the sample and the die walls. The results demonstrate the feasibility of scaling ECAP to large sizes for use in industrial applications. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 22 条
[1]   Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP [J].
Akamatsu, H ;
Fujinami, T ;
Horita, Z ;
Langdon, TG .
SCRIPTA MATERIALIA, 2001, 44 (05) :759-764
[2]  
ALEXANDROV IV, 2000, TUNGSTEN HARDMETALS, V5, P27
[3]   Superplastic aluminum forming - Expanding its techno-economic niche [J].
Barnes, AJ .
TOWARDS INNOVATION IN SUPERPLASTICITY II, 1999, 304-3 :785-796
[4]   Influence of pressing speed on microstructural development in equal-channel angular pressing [J].
Berbon, PB ;
Furukawa, M ;
Horita, Z ;
Nemoto, M ;
Langdon, TG .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (08) :1989-1997
[5]   The shearing characteristics associated with equal-channel angular pressing [J].
Furukawa, M ;
Iwahashi, Y ;
Horita, Z ;
Nemoto, M ;
Langdon, TG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 257 (02) :328-332
[6]   The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE [J].
Gholinia, A ;
Prangnell, PB ;
Markushev, MV .
ACTA MATERIALIA, 2000, 48 (05) :1115-1130
[7]   Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties [J].
Horita, Z ;
Fujinami, T ;
Nemoto, M ;
Langdon, TG .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2000, 31 (03) :691-701
[8]   Superplastic forming at high strain rates after severe plastic deformation [J].
Horita, Z ;
Furukawa, M ;
Nemoto, M ;
Barnes, AJ ;
Langdon, TG .
ACTA MATERIALIA, 2000, 48 (14) :3633-3640
[9]   Developing stable fine-grain microstructures by large strain deformation [J].
Humphreys, FJ ;
Prangnell, PB ;
Bowen, JR ;
Gholinia, A ;
Harris, C .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1756) :1663-1680
[10]  
ISAHASHI Y, 1996, SCRIPTA MATER, V35, P149