Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells

被引:82
作者
Eggers, DK
Welch, WJ
Hansen, WJ
机构
[1] UNIV CALIF SAN FRANCISCO,DEPT MOL & CELLULAR PHARMACOL,SAN FRANCISCO,CA 94143
[2] UNIV CALIF SAN FRANCISCO,DEPT MED,SAN FRANCISCO,CA 94143
[3] UNIV CALIF SAN FRANCISCO,DEPT PHYSIOL,SAN FRANCISCO,CA 94143
关键词
D O I
10.1091/mbc.8.8.1559
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Folding of newly synthesized proteins in vivo is believed to be facilitated by the cooperative interaction of a defined group of proteins known as molecular chaperones. We investigated the direct interaction of chaperones with nascent polypeptides in the cytosol of mammalian cells by multiple methods. A new approach using a polyclonal antibody to puromycin allowed us to tag and capture a population of truncated nascent polypeptides with no bias as to the identity of the bound chaperones. In addition, antibodies that recognize the cytosolic chaperones hsp70, CCT (TRiC), hsp40, p48 (Hip), and hsp90 were compared on the basis of their ability to coprecipitate nascent polypeptides, both before and after chemical cross-linking. By all three approaches, hsp70 was found to be the predominant chaperone bound to nascent polypeptides. The interaction between hsp70 and nascent polypeptides is apparently dynamic under physiological conditions but can be stabilized by depletion of ATP or by cross-linking. The cytosolic chaperonin CCT was found to bind primarily to full-length, newly synthesized actin, and tubulin. We demonstrate and caution that nascent polypeptides have a propensity for binding many proteins nonspecifically in cell lysates. Although current models of protein folding in vivo have described additional components in contact with nascent polypeptides, our data indicate that the hsp70 and, perhaps, the hsp90 families are the predominant classes of molecular chaperones that interact with the general population of cytosolic nascent polypeptides.
引用
收藏
页码:1559 / 1573
页数:15
相关论文
共 49 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]  
BECK SC, 1994, J BIOL CHEM, V269, P21803
[3]   HEAT-SHOCK PROTEINS AS MOLECULAR CHAPERONES [J].
BECKER, J ;
CRAIG, EA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 219 (1-2) :11-23
[4]   INTERACTION OF HSP-70 WITH NEWLY SYNTHESIZED PROTEINS - IMPLICATIONS FOR PROTEIN FOLDING AND ASSEMBLY [J].
BECKMANN, RP ;
MIZZEN, LA ;
WELCH, WJ .
SCIENCE, 1990, 248 (4957) :850-854
[5]   QUANTITATIVE ELECTROPHORESIS IN POLYACRYLAMIDE GELS OF 2-40 PERCENT [J].
BLATTLER, DP ;
BRADLEY, A ;
VANSLYKE, K ;
GARNER, F .
JOURNAL OF CHROMATOGRAPHY, 1972, 64 (01) :147-&
[6]   THE CONSTITUTIVE AND STRESS INDUCIBLE FORMS OF HSP-70 EXHIBIT FUNCTIONAL SIMILARITIES AND INTERACT WITH ONE ANOTHER IN AN ATP-DEPENDENT FASHION [J].
BROWN, CR ;
MARTIN, RL ;
HANSEN, WJ ;
BECKMANN, RP ;
WELCH, WJ .
JOURNAL OF CELL BIOLOGY, 1993, 120 (05) :1101-1112
[7]   Supervising the fold: Functional principles of molecular chaperones [J].
Buchner, J .
FASEB JOURNAL, 1996, 10 (01) :10-19
[8]   Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin [J].
Dobrzynski, JK ;
Sternlicht, ML ;
Farr, GW ;
Sternlicht, H .
BIOCHEMISTRY, 1996, 35 (49) :15870-15882
[9]  
EGGERS DK, 1997, TEHSIS U CALIFORNIA
[10]   The human cytosolic molecular chaperones hsp90, Hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding [J].
Freeman, BC ;
Morimoto, RI .
EMBO JOURNAL, 1996, 15 (12) :2969-2979