Using SSURGO data to improve Sacramento Model a priori parameter estimates

被引:98
作者
Anderson, RM [1 ]
Koren, VI [1 ]
Reed, SM [1 ]
机构
[1] NOAA, Natl Weather Serv, Off Hydrol Dev, Hydrol Lab, Silver Spring, MD 20912 USA
关键词
SSURGO dam; STATSGO data; a priori parameter estimation; sacramento hydrologic model; calibration; distributed modeling; flash flood forcasting;
D O I
10.1016/j.jhydrol.2005.07.020
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As it transitions to smaller scale, distributed hydrologic modeling approaches, the National Weather Service (NWS) is improving methods of estimating parameters for the Sacramento Soil Moisture Accounting model (SAC-SMA). This is the major hydrologic model used for flood forecasting at most of the 13 river forecasting centers throughout the United States. A physically based approach based on the nationally available State Soil Geographic Database (STATSGO) has been developed (Koren, V.I., Smith, M., Wang, D., Zhang, Z., 2000. Use of soil property data in the derivation of conceptual rainfall-runoff model parameters. Proceedings of the 15th Conference on Hydrology, AMS, Long Beach, CA, pp. 103-106; Koren, V., Smith, M., Duan, Q., 2003. Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. In: Duan, Q., Sorooshian, S., Gupta, H., Rosseau, H., Turcotte, H. (Eds.), Calibration of Watershed Models, Water Science and Applications 6, AGU, pp. 239-254), leading to objective, spatially consistent parameter estimates. This paper shows that a better representation of basin physical properties and potential improvements in hydrologic simulation performance can be obtained by basing parameter estimates on a finer-scale database of soils data, the Soil Survey Geographic Database (SSURGO), combined with high-resolution land use/land cover data. Results also suggest that an intermediate level of improvement may be obtained by combining detailed land cover data with STATSGO to refine current parameter estimates. This latter finding is significant because the SSURGO data are not yet available for the entire country. Published by Elsevier B.V.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 22 条
  • [1] [Anonymous], 2003, J GEOPHYS RES ATMOS, DOI DOI 10.1029/2002JD003118
  • [2] ARMSTRONG BL, 1978, 37 NWSH HYDRO NOAA, P53
  • [3] Burnash R. J. C., 1995, Computer models of watershed hydrology., P311
  • [4] CLAPP RB, 1978, WATER RESOUR RES, V14, P601, DOI 10.1029/WR014i004p00601
  • [5] A STATISTICAL EXPLORATION OF THE RELATIONSHIPS OF SOIL-MOISTURE CHARACTERISTICS TO THE PHYSICAL-PROPERTIES OF SOILS
    COSBY, BJ
    HORNBERGER, GM
    CLAPP, RB
    GINN, TR
    [J]. WATER RESOURCES RESEARCH, 1984, 20 (06) : 682 - 690
  • [6] Dingman S, 2002, PHYS HYDROLOGY, P600
  • [7] *ESRI, 1996, US ARCV GIS, P350
  • [8] Hydrology Laboratory Research Modeling System (HL-RMS) of the US National Weather Service
    Koren, V
    Reed, S
    Smith, M
    Zhang, Z
    Seo, DJ
    [J]. JOURNAL OF HYDROLOGY, 2004, 291 (3-4) : 297 - 318
  • [9] Koren V., 2003, CALIBRATION WATERSHE, P239
  • [10] Koren VI, 2000, 15TH CONFERENCE ON HYDROLOGY, P103