a-stratified multistage computerized adaptive testing

被引:173
作者
Chang, HH [1 ]
Ying, ZL
机构
[1] Natl Board Med Examiners, 3750 Market St, Philadelphia, PA 19104 USA
[2] Rutgers State Univ, Dept Stat, Hill Ctr, Piscataway, NJ 08854 USA
[3] Chinese Univ Hong Kong, Sha Tin 100083, Peoples R China
关键词
adaptive testing; computerized adaptive testing; discrimination parameter; item exposure rate; item information; item selection; stratification; Sympson-Hetter method; test security;
D O I
10.1177/01466219922031338
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Computerized adaptive tests (CAT) commonly use item selection methods that select the item which provides maximum information at an examinee's estimated trait level, However, these methods can yield extremely skewed item exposure distributions. For tests based on the three-parameter logistic model, it was found that administering items with low discrimination parameter (a) values early in the test and administering those with high a values later was advantageous; the skewness of item exposure distributions was reduced while efficiency was maintained in trait level estimation. Thus, a new multistage adaptive testing approach is proposed that factors a into the item selection process. In this approach, the items in the item bank are stratified into a number of levels based on their a values. The early stages of a test use items with lower us and later stages use items with higher us. At each stage, items are selected according to an optimization criterion from the corresponding level. Simulation studies were performed to compare a-stratified CATs with CATs based on the Sympson-Hetter method for controlling item exposure. Results indicated that this new strategy led to tests that were well-balanced, with respect to item exposure, and efficient. The a-stratified CATs achieved a lower average exposure rate than CATs based on Bayesian or information-based item selection and the Sympson-Hetter method.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 25 条