Nrf2: A potential molecular target for cancer chemoprevention by natural compounds

被引:329
作者
Jeong, WS
Jun, M
Kong, ANT
机构
[1] Rutgers State Univ, Dept Pharmaceut, Ernest Mario Sch Pharm, Piscataway, NJ 08854 USA
[2] Celgene Corp, Bioanalyt Preclin Dept, Warren, NJ USA
关键词
D O I
10.1089/ars.2006.8.99
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the most prominent strategies of cancer chemoprevention might be protecting cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. This protection could be achieved through the induction of phase 2 detoxifying enzymes and antioxidant enzymes such as glutathione S-transferase, NAD(P)H quinone oxidoreductase 1, and heme oxygenase-1, a process that is mediated mainly by the antioxidant response elements (ARE) within the promoter regions of these genes. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a member of the Cap 'n'collar (CNC) family of basic region-leucine zipper transcription factors, plays a key role in ARE-mediated gene expression. Under normal condition, Nrf2 is sequestered in the cytoplasm by an actin-binding protein, Kelch-like ECH associating protein 1 (Keap1), and upon exposure of cells to inducers such as oxidative stress and certain chemopreventive agents, Nrf2 dissociates from Keap1, translocates to the nucleus, binds to AREs, and transactivates phase 2 detoxifying and antioxidant genes. Several upstream signaling pathways including mitogen-activated protein kinases, protein kinase C, phosphatidylinositol 3-kinase, and transmembrane kinase are implicated in the regulation of Nrf2/ARE activity. Furthermore, many natural chemopreventive agents are known to induce Nrf2/AREdependent gene expression, also in part by regulating the turnover of the Nrf2 protein itself. This review discusses our current understanding of the Nrf2/ARE pathway as a potential molecular target for cancer chemoprevention, as well as the feasibility of screening natural compounds for activation of this pathway and as potential cancer preventive agents for human use.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 64 条
[1]  
Alam J, 2000, J BIOL CHEM, V275, P27694
[2]   Curcurnin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element [J].
Balogun, E ;
Hoque, M ;
Gong, PF ;
Killeen, E ;
Green, CJ ;
Foresti, R ;
Alam, J ;
Motterlini, R .
BIOCHEMICAL JOURNAL, 2003, 371 :887-895
[3]   Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression [J].
Bloom, DA ;
Jaiswal, AK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :44675-44682
[4]   Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: Effect of chemical structure and stress signals [J].
Chen, C ;
Pung, D ;
Leong, V ;
Hebbar, V ;
Shen, GX ;
Nair, S ;
Li, W ;
Kong, ANT .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 37 (10) :1578-1590
[5]   Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death [J].
Chen, C ;
Yu, R ;
Owuor, ED ;
Kong, ANT .
ARCHIVES OF PHARMACAL RESEARCH, 2000, 23 (06) :605-612
[6]   Phenylethyl isothiocyanate induces apoptotic signaling via suppressing phosphatase activity against c-Jun N-terminal kinase [J].
Chen, YR ;
Han, J ;
Kori, R ;
Kong, ANT ;
Tan, TH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (42) :39334-39342
[7]   Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival [J].
Cullinan, SB ;
Zhang, D ;
Hannink, M ;
Arvisais, E ;
Kaufman, RJ ;
Diehl, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (20) :7198-7209
[8]   The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase [J].
Cullinan, SB ;
Gordan, JD ;
Jin, JO ;
Harper, JW ;
Diehl, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (19) :8477-8486
[9]   PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress [J].
Cullinan, SB ;
Diehl, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :20108-20117
[10]   Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase 1 gene [J].
Dhakshinamoorthy, S ;
Jaiswal, AK .
ONCOGENE, 2001, 20 (29) :3906-3917