Drug delivery and nanoparticles: Applications and hazards

被引:2585
作者
De Jong, Wim H. [1 ]
Borm, Paul J. A. [2 ,3 ]
机构
[1] Natl Inst Publ Hlth & Environm RIVM, Lab Toxicol Pathol & Genet, NL-3720 BA Bilthoven, Netherlands
[2] Zuyd Univ, Ctr Expertise Life Sci, Heerlen, Netherlands
[3] Magnamed GmbH, Aachen, Germany
来源
INTERNATIONAL JOURNAL OF NANOMEDICINE | 2008年 / 3卷 / 02期
关键词
drug delivery; cancer therapy; nanoparticles; toxicology; pharmaceuticals;
D O I
10.2147/ijn.s596
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.
引用
收藏
页码:133 / 149
页数:17
相关论文
共 157 条
[1]   Nanocrystal targeting in vivo [J].
Åkerman, ME ;
Chan, WCW ;
Laakkonen, P ;
Bhatia, SN ;
Ruoslahti, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12617-12621
[2]   The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung -: art. no. 129 [J].
Albrecht, C ;
Knaapen, AM ;
Becker, A ;
Höhr, D ;
Haberzettl, P ;
van Schooten, FJ ;
Borm, PJA ;
Schins, RPF .
RESPIRATORY RESEARCH, 2005, 6 (1)
[3]   Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles [J].
Alyautdin, RN ;
Petrov, VE ;
Langer, K ;
Berthold, A ;
Kharkevich, DA ;
Kreuter, J .
PHARMACEUTICAL RESEARCH, 1997, 14 (03) :325-328
[4]  
[Anonymous], TOXICOLOGY NANOPARTI
[5]  
[Anonymous], POL BRIEF ESF ESF SC
[6]  
[Anonymous], 2005, VIS PAP BAS STRAT RE
[7]  
[Anonymous], 2006, PUBL HLTH COUNC NETH
[8]   Noninvasive imaging of quantum dots in mice [J].
Ballou, B ;
Lagerholm, BC ;
Ernst, LA ;
Bruchez, MP ;
Waggoner, AS .
BIOCONJUGATE CHEMISTRY, 2004, 15 (01) :79-86
[9]   In vivo half life of nanoencapsulated L-asparaginase [J].
Baran, ET ;
Özer, N ;
Hasirci, V .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2002, 13 (12) :1113-1121
[10]   STEALTH ME.PEG-PLA NANOPARTICLES AVOID UPTAKE BY THE MONONUCLEAR PHAGOCYTES SYSTEM [J].
BAZILE, D ;
PRUDHOMME, C ;
BASSOULLET, MT ;
MARLARD, M ;
SPENLEHAUER, G ;
VEILLARD, M .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (04) :493-498